Toán học – Những điều kì thú và những mốc son lịch sử (Phần 26)

88. Hệ phương trình là gì?

Khi hai hoặc nhiều phương trình được thỏa mãn bởi những giá trị giống nhau của những đại lượng chưa biết, thì chúng được gọi là hệ phương trình.

Một ví dụ của hệ phương trình gồm hai biến, x và y, là

3x + 4y = 18,

5x + 7y = 31.

89. Chúng được giải như thế nào?

Người ta giải những phương trình như thế ở nhà trường trước tiên bằng cách loại trừ x hoặc y.

Ở đây có thể loại trừ y bằng cách nhân phương trình thứ nhất với 7, và phương trình thứ hai với 4, sau đó trừ nhau. Như vậy,

7 nhân vào phương trình I cho ta: 21x + 28y = 126,

4 nhân vào phương trình II cho ta: 20x + 28y = 124.

Trừ nhau cho ta x = 2.

Thay giá trị của x vào một trong hai phương trình đã cho, ví dụ thay vào phương trình thứ nhất, ta được

6 + 4y = 18,

hay 4y = 12, hay y = 3.

90. Hệ phương trình chứa ba biến được giải như thế nào?

Phương pháp giải hệ phát triển chứa nhiều hơn hai biến là tương tự như trên.

Ví dụ,    x + y + 3z = 12,

                2x + 3y + 4z = 20,

                3x + 2y + 5z = 22,

Trước tiên loại z ra khỏi hai phương trình đầu, sau đó loại ra khỏi hai phương trình cuối. Làm như vậy mang lại cho ta hai phương trình chỉ chứa hai biến, x và y. Hai phương trình này có thể được giải bình thường.

Như vậy,

4 nhân vào phương trình I cho ta:             4x + 4y + 12z = 48,

3 nhân vào phương trình II cho ta:            6x + 9y + 12z = 60,

Trừ hai phương trình:                                     - 2x –5y = - 12

                Hay                                                        2x + 5y = 12                        (A)

Làm lại lần nữa,

5 nhân vào phương trình II cho ta:            10x + 15y + 20z = 100,

4 nhân vào phương trình III cho ta:          12x + 8y + 20z = 88,

Trừ hai phương trình:                                     - 2x + 7y = 12,

                Hay                                                        2x - 7y = - 12.                      (B)

Giải hệ gồm (A) và (B) như bình thường, ta được x = 1, y = 2.

Thay giá trị của x và y vào phương trình thứ nhất, ta được z = 3.

Như vậy, ta có x = 1, y = 2, z = 3.

91. Phương trình vô định nghĩa là gì?

Nếu số lượng biến nhiều hơn số lượng phương trình, thì người ta nói các phương trình đó là vô định.

Những phương trình như thế có vô số nghiệm.

Ví dụ, xét phương trình 3x + y = 10.

Nó có thể được viết là y = 10 – 3x.

Ở đây, tương ứng với một giá trị bất kì của x, y có một giá trị.

Như vậy, phương trình trên có vô số nghiệm.

Nhưng nếu phương trình trên chỉ được giải theo nghiệm nguyên dương, thì số lượng nghiệm là hữu hạn.

92. Làm thế nào giải tìm nghiệm nguyên dương cho phương trình: 3x + y = 10?

Phương trình đã cho có thể viết là y = 10 – 3x.

Vì y phải là một số nguyên dương, nên x chỉ có thể nhận các giá trị 0, 1, 2 hoặc 3. Nếu x được gán một giá trị lớn hơn 3 thì y trở thành âm.

Vì thế, sau đây là các nghiệm dương của phương trình đã cho:

                x = 0, y = 10;

                x = 1, y = 7;

                x = 2, y = 4;

                x = 3, y = 1.

93. Phương trình Diophantine là gì?

Các phương trình vô định còn được gọi là phương trình Diophantine để tôn vinh nhà toán học người Hi Lạp cổ đại Diophantus, người đầu tiên trình bày có hệ thống về những phương trình như thế, và đã thể hiện kĩ năng xuất sắc khi giải chúng.

94. Cái gì làm phát sinh những phương trình như thế và chúng được giải quyết như thế nào?

Những bài toán thuộc loại sau đây dẫn tới các phương trình vô định.

Bài toán: Một người chi ra 414 rupee để mua bút mực và bút chì. Nếu mỗi cái bút mực giá 13 rupee và mỗi bút chì giá 11 rupee, thì anh ta sẽ mua mỗi loại bao nhiêu cái?

Gọi x là số lượng bút mực, và y là số lượng bút chì, thì

13x + 11y = 414,                                (1)

trong đó x và y là các số nguyên dương.

Sau đây là phương pháp giải:

Chia phương trình cho 11, hệ số nhỏ nhất trong hai hệ số, khi đó

Bây giờ ta nhân (2x – 7) với một số nguyên sao cho hệ số của x sai khác một đơn vị với 11 hoặc bội của 11.

Một số nguyên như vậy trong trường hợp này là 6.

(Cần sử dụng một thủ thuật tương tự trước khi đưa vào một kí hiệu cho số nguyên đó.)

Nhân (2x – 7) với 6, ta có

Do đó, x = 11p + 9                                            (2)

Thay giá trị này của x vào (1):

y = 27 – 13p                                                        (3)

Từ (3) ta thấy nếu p lớn hơn 2, thì y trở thành âm. Các giá trị nguyên dương của x và y, do đó, chỉ có thể thu được bằng cách đặt p = 0, 1 và 2.

Như vậy, nghiệm đầy đủ được cho bởi

                p = 0,     x = 9,     y = 27;

                p = 1,     x = 20,   y = 14;

                p = 2,     x = 31,   y = 1.

95. Bài toán cây tre gãy của Bhaskar là gì?

Bhaskaracharya, nhà toán học danh tiếng người Hindu đã đưa ra bài toán này trong tác phẩm nổi tiếng của ông, Lilavati.

Nó có dạng như sau: Nếu một cây tre cao 32 cubit bị gió làm gãy sao cho ngọn tre chạm đất cách gốc tre 16 cubit, thì chỗ bị gãy cách mặt đất bao nhiêu?

Định lí Pythagoras được sử dụng để giải bài toán này.

Giả sử cây tre AC bị gãy tại chỗ có độ cao x so với đất:

AB = x, BC = 32 – x = BD, AD = 16

Khi đó, theo định lí Pythagoras:

AB2 + AD2 = BD2

Hay        x2 + 162 = (32 – x)2

Hay        x2 + 256 = 1024 – 64 x + x2

Hay        64x = 768,            hay x = 12 cubit.

Cây tre bị gãy tại độ cao 12 cubit so với đất.

(Cubit là một đơn vị đo chiều dài thời xưa, một cubit bằng khoảng 18 đến 22 inch.)

Xác thực:

AB + BC = 12 + 20 = 32

AB2 + AD2 = BD2

122 + 162 = 202

96. Bài toán con công và con rắn của Bhaskar là gì?

Đó là một bài toán khác được Bhaskaracharya trình bày trong quyển sách Lilavati của ông. Nó cũng sử dụng định lí Pythagoras, nhưng nó dẫn tới một phương trình vô định.

Bài toán có dạng như sau:

Một con công đang đậu trên cái cột tại cửa hang của một con rắn. Nhìn thấy con rắn cách cái cột gấp ba lần chiều cao của cột, con công bổ xuống con rắn theo một đường thẳng trước khi nó có thể bò tới miệng hang. Nếu con công và con rắn có quãng đường đi bằng nhau, thì chỗ chúng gặp nhau cách miệng hang bao nhiêu cubit?

Kí hiệu miệng hang của con rắn là A. Gọi AB là cái cột, và con công đậu tại B, và con rắn ở D.

Gọi chỗ chúng gặp nhau là C, cách miệng hang x cubit. Đặt y là chiều cao của cái cột, khi đó

AC = x, AB = y, AD = 3y (đã cho)

và CD = 3y – x = B , Þ BC = CD (đã cho).

Theo định lí Pythagoras,

AB2 + BC2 = AC2

Hay        y2 + x2 = (3y – x)2

Hay        y2 + x2 = 9y2 – 6xy + x2

Hay        8y2 – 6xy = 0

Hay        2y (4y – 3x) = 0

Chia cho 2y, ta được

4y – 3x = 0

Hay        x = (4/3) y

Đây là một phương trình vô định có nhiều nghiệm.

Một vài nghiệm là

                Nếu       y = 3, x = 4;

                Nếu       y = 6, x = 8;

                Nếu       y = 9, x = 12, vân vân.

Toán học – Những điều kì thú và những mốc son lịch sử
A.L. Audichya
Trần Nghiêm dịch
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Vì sao một số vết nứt đẩy nhau ra?
22/06/2018
Một nghiên cứu lí thuyết về sự lan truyền vết nứt đem lại một lời giải thích cho sự đẩy nhau mà người ta quan sát thấy
Vật lí Lượng tử Tốc hành (Phần 14)
22/06/2018
Các số lượng tử Số lượng tử chính mô tả mức năng lượng của các lớp vỏ electron không phải là cách duy nhất để chúng
Vật lí Lượng tử Tốc hành (Phần 13)
21/06/2018
Cấu trúc nguyên tử Mô hình nguyên tử mà Bohr và Rutherford mô tả là khá đơn giản, với một hạt nhân nguyên tử tại trung tâm,
Các va chạm hạt bên trong LHC trông như thế nào?
20/06/2018
Nếu hai proton va chạm ở tốc độ bằng 99,9999991% tốc độ ánh sáng thì chúng có tạo ra âm thanh hay không? Máy Va chạm Hadron
Những bài học thiên văn ngắn (Phần 3)
18/06/2018
Trái Đất quay tròn xung quanh Mặt Trời theo một vòng trònMô hình nhật tâm sơ khai Là nhà thiên văn học và nhà toán học xứ
Những bài học thiên văn ngắn (Phần 2)
18/06/2018
Rõ ràng Trái Đất không chuyển độngMô hình địa tâm Là một trong những nhà triết học có sức ảnh hưởng nhất ở phương
Gia đình Stephen Hawking sẽ phát giọng nói của ông về phía một lỗ đen
17/06/2018
Người thân của Stephen Hawking dự định phát bản ghi giọng nói của ông về phía một lỗ đen, trong khi tro cốt của ông được
7 điều có thể bạn chưa biết về tia gamma
12/06/2018
Tia gamma là loại bức xạ giàu năng lượng nhất, nó có đủ năng lượng để đi xuyên rào chắn bằng kim loại hoặc bê tông.

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com