Toán học – Những điều kì thú và những mốc son lịch sử (Phần 4)

21. Hình học Lobachewsky là gì?

Định đề vừa nói ở trên có vẻ quá hiển nhiên nên người ta chưa từng nghĩ nó có thể hoặc có lẽ nên thay đổi. Nhưng một vài nhà toán học, Lobachewsky là một trong số đó, đã nghĩ tới cái xảy ra khi định đề trên được thay thế bởi định đề sau đây:

Qua một điểm cho trước nằm ngoài một đường thẳng cho trước, có thể vẽ hai đường thẳng khác nhau cùng song song với đường thẳng đã cho.

Chúng ta có thể vẽ một hình như sau, trong đó hai đường thẳng tách biệt được vẽ qua điểm P, một hướng sang trái và một hướng sang phải.

Các nhà toán học tìm thấy rằng giả thiết lạ lẫm này không những không mang lại sai lầm gì mà một hệ quả logic của giả thiết mới còn đưa họ đến với một bộ môn hình học mới trong đó tổng số đo ba góc của một tam giác nhỏ hơn 180 độ.

22. Nó chẳng phải là một giả thiết lạ hay sao?

Nói cho hợp lí thì chẳng có gì sai khi giả sử người ta có quyền tự do lựa chọn những giả thiết căn bản bất kì miễn là chúng không mâu thuẫn nhau.

23. Nhưng hai đường thẳng trong hình vẽ ở trên trông không có vẻ gì song song với đường thẳng đã cho!

Nguyên nhân hai đường thẳng trong hình vẽ ở trên, một hướng sang phải và một hướng sang trái, không có vẻ song song với đường thẳng đã cho là vì hình được vẽ trong một mặt phẳng bình thường, nơi chỉ có hình học Euclid đúng còn hình học mới thì không!

24. Còn có ai khác đi tới quan điểm mới trên?

Ba nhà toán học khác nhau, Gauss người Đức, Bolyai người Hungary và Lobachewsky người Nga đã khám phá ra bộ môn hình học phù hợp logic này khá độc lập nhau, và gần như đồng thời, khoảng năm 1826.

25. Vậy tại sao lại gọi là hình học Lobachewsky?

Gauss, nhà toán học nổi tiếng nhất thời ấy, không dám mạo hiểm với những quan niệm mới này vì sợ ảnh hưởng đến danh tiếng của ông.

Bolyai thì dũng cảm xông pha, nhưng ông đã không phát triển những khái niệm mới sâu sắc và trọn vẹn như Lobachewsky.

Lobachewsky là người đầu tiên giới thiệu các khái niệm một cách rộng rãi, và còn phát triển chúng sau đó trong một số bài báo. Vì thế, bộ môn hình học mới được gọi là hình học Lobachewsky.

26. Hình học Riemann là gì?

Riemann, một nhà toán học người Đức, vào khoảng năm 1854, đã nghĩ tới việc thay thế định đề hai đường song song bằng định đề sau đây:

Qua một điểm cho trước không thuộc một đường thẳng cho trước, không vẽ được đường thẳng nào song song với đường thẳng đã cho.

Một hệ quả logic của giả thiết này đưa ông đến với một bộ môn hình học trong đó tổng ba góc của một tam giác lớn hơn 180 độ.

Bộ môn hình học này được gọi là hình học Riemann.

27. Những định lí nào đúng trong cả ba bộ môn hình học?

Những định lí hình học Euclid không phụ thuộc vào định đề hai đường song song thì vẫn không thay đổi. Ví dụ, các định lí sau đây là đúng trong cả ba bộ môn hình học:

(i)                  Hai góc đối đỉnh thì bằng nhau.

(ii)                Hai góc đáy của một tam giác cân thì bằng nhau.

28. Đâu là chỗ khác nhau giữa ba bộ môn hình học?

So sánh dưới đây nêu rõ những chỗ khác biệt.

Trong hình học Euclid:

(i)                  Tổng ba góc của một tam giác luôn bằng 180 độ.

(ii)                Hai đường thẳng song song thì không bao giờ gặp nhau, cho dù có kéo dài ra bao xa, và luôn luôn cách nhau một khoảng không đổi.

(iii)               Hai tam giác có thể có ba góc bằng nhau nhưng diện tích khác nhau. Hai tam giác như vậy được gọi là tam giác đồng dạng, và tam giác này là hình phóng to của tam giác kia.

(iv)              Qua một điểm nằm ngoài một đường thẳng, chỉ vẽ được một đường vuông góc với đường thẳng đó.

(v)                Tỉ số của chu vi của một đường tròn và đường kính của nó bằng p.

Trong hình học Lobachewsky:

(i)                  Tổng ba góc của một tam giác luôn nhỏ hơn 180o, và lượng nhỏ hơn tỉ lệ với diện tích của tam giác.

(ii)                Hai đường thẳng song song thì không bao giờ gặp nhau, nhưng khoảng cách giữa chúng nhỏ dần đi khi kéo dài chúng ra xa.

(iii)               Chỉ hai tam giác bằng nhau về diện tích mới có ba góc bằng nhau, cho nên hai tam giác có diện tích khác nhau không bao giờ có thể đồng dạng. Trong bộ môn hình học này, khi một tam giác tăng diện tích, thì tổng số đo ba góc của nó giảm.

(iv)              Qua một điểm nằm ngoài một đường thẳng, chỉ vẽ được một đường vuông góc với đường thẳng đó giống như trong hình học Euclid.

(v)                Tỉ số của chu vi của một đường tròn và đường kính của nó luôn lớn hơn p, và tỉ số đó càng lớn khi diện tích vòng tròn càng lớn.

Trong hình học Riemann:

(i)                  Tổng ba góc của một tam giác luôn lớn hơn 180o.

(ii)                Mỗi cặp đường thẳng nằm trong một mặt phẳng phải cắt nhau.

(iii)               Tam giác càng lớn thì góc càng lớn.

(iv)              Có thể vẽ vô số đường vuông góc từ một điểm đến một đường thẳng cho trước.

(v)                Tỉ số của chu vi của một đường tròn và đường kính của nó luôn nhỏ hơn p, và giảm khi diện tích của vòng tròn tăng.

29. Bộ môn hình học nào đúng?

Mỗi bộ môn hình học đều đúng nhưng chỉ trên những mặt mà nó có nghĩa thôi.

Hình học Euclid áp dụng cho những hình vẽ trên một tờ giấy hoặc trên một mặt phẳng.

Hình học phi Euclid của Riemann rất gần đúng cho những hình vẽ trên bề mặt của một hình cầu.

Hình học phi Euclid của Lobachewsky đúng cho những hình vẽ trên một mặt gọi là giả cầu. Xem bên dưới:

Mặt giả cầu là mặt tròn xoay thu được bằng cách quay đường cong gọi là tractrix xung quanh trục thẳng đứng Oy.

Các tam giác vẽ trên những mặt khác nhau được thể hiện trong hình bên dưới:

Mỗi môn hình học hoạt động tốt trên mặt tương ứng của nó.

Toán học – Những điều kì thú và những mốc son lịch sử
Trần Nghiêm dịch
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


M106: Thiên hà xoắn ốc có tâm khác thường
21/07/2019
Điều gì đang xảy ra tại tâm của thiên hà xoắn ốc M106? Là một đĩa sao và chất khí xoáy tít, diện mạo của M106 nổi bật
5 lí do nên thám hiểm các tiểu hành tinh
21/07/2019
Chính vào hôm Trái Đất sống sót sau một vụ va chạm suýt xảy ra với tiểu hành tinh 367943 Duende, các máy quay ở Nga đã bất
Vật lí Lượng tử Tốc hành (Phần 64)
21/07/2019
Lực hấp dẫn lượng tử Lực hấp dẫn là lực duy nhất chưa dung hòa được với cơ học lượng tử. Thuyết tương đối rộng
Vật lí Lượng tử Tốc hành (Phần 63)
21/07/2019
Điện động lực học lượng tử Điện động lực học lượng tử (QED – quantum electrodynamics) là lí thuyết trường mô tả
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 32)
21/07/2019
Khám phá vành sao Thổ 1610 Galileo Galilei (1564–1642), Giovanni Domenico Cassini (1625–1712), Christiaan Huygens (1629–1695) “Các vành sao
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 31)
21/07/2019
Các định luật Kepler về chuyển động hành tinh 1609 Johannes Kepler (1571–1630) “Mặc dù Kepler ngày nay chủ yếu được nhớ
Sai lệch 9 phần trăm
10/07/2019
Một sai lệch giữa các phép đo về hằng số Hubble khiến các nhà khoa học phát vấn liệu có điều gì đó không đúng trong hiểu
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 44)
10/07/2019
Chương 12 HÊ, NHÌN ĐI… NÓ BAY KÌA! Khí động lực học và những máy bay đầu tiên Không bao lâu sau khi những máy bay đầu tiên

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com