Bài giải môn TOÁN kì thi ĐH 2012 khối A và A1

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012

Môn: TOÁN - Khối: A

1340931618-du-thi-dai-hoc1

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu 1 (2,0 điểm) Cho hàm số ,với m là tham số thực.

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 0.

b) T́m m để đồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh của một tam giác vuông.

Câu 2 (2,0 điểm) Giải phương trình

Câu 3 (1,0 điểm) Giải hệ phương trình (x, y Î R).

Câu 4 (1,0 điểm) Tính tích phân

Câu 5 (1,0 điểm) Cho h́nh chóp S.ABC có đáy là tam giác đều cạnh a. H́nh chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 2HB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 600. Tính thể tích của khối chóp S.ABC và tính khoảng cách giữa hai đường thẳng SA và BC theo a.

Câu 6 (1,0 điểm) : Cho các số thực x, y, z thỏa măn điều kiện x +y + z = 0. T́m giá trị nhỏ nhất của biểu thức .

PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)

A. Theo chương tŕnh Chuẩn

Câu 7.a (1,0 điểm) : Trong mặt phẳng với hệ tọa độ Oxy, cho h́nh vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử và đường thẳng AN có phương tŕnh 2x – y – 3 = 0. T́m tọa độ điểm A.

Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: và điểm I (0; 0; 3). Viết phương tŕnh mặt cầu (S) có tâm I và cắt d tại hai điểm A, B sao cho tam giác IAB vuông tại I.

Câu 9.a (1,0 điểm). Cho n là số nguyên dương thỏa măn . T́m số hạng chứa x5 trong khai triển nhị thức Niu-tơn , x ≠ 0.

B. Theo chương tŕnh Nâng cao

Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tṛn (C) : x2 + y2 = 8. Viết phương tŕnh chính tắc elip (E), biết rằng (E) có độ dài trục lớn bằng 8 và (E) cắt (C) tại bốn điểm tạo thành bốn đỉnh của một h́nh vuông.

Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: , mặt phẳng (P) : x + y – 2z + 5 = 0 và điểm A (1; -1; 2). Viết phương tŕnh đường thẳng D cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN.

Câu 9.b (1,0 điểm) Cho số phức z thỏa . Tính môđun của số phức w = 1 + z + z2.

 

BÀI GIẢI GỢI Ý MÔN TOÁN ĐH 2012

 

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu 1: a/ Khảo sát, vẽ (C) :

m = 0 ̃ y = x4 – 2x2

D = R, y’ = 4x3 – 4x, y’ = 0 Û x = 0 hay x = ±1

Hàm số đồng biến trên (-1; 0) và (1; +¥), nghịch biến trên (-¥;-1) và (0; 1)

Hàm số đạt cực đại tại x = 0 và y = 0, đạt cực tiểu tại x = ±1 và yCT = -1

Bảng biến thiên :

x -¥ -1 0 1 +¥

y - 0 + 0 - 0 +

y +¥ 1 +¥

-1 -1

 

y = 0 Û x = 0 hay x =

Đồ thị tiếp xúc với Ox tại (0; 0) và cắt Ox tại hai điểm (; 0)

b/ y’ = 4x3 – 4(m + 1)x

y’ = 0 Û x = 0 hay x2 = (m + 1)

Hàm số có 3 cực trị Û m + 1 > 0 Û m > -1

Khi đó đồ thị hàm số có 3 cực trị A (0; m2),

B (-; – 2m – 1); C (; –2m – 1)

Do AB = AC nên tam giác chỉ có thể vuông tại A. Gọi M là trung điểm của BC ̃ M (0; -2m–1)

Do đó ycbt Û BC = 2AM (đường trung tuyến bằng nửa cạnh huyền)

Û 2 = 2(m2 + 2m + 1) = 2(m + 1)2 Û 1 = (m + 1) = (do m > -1)

Û 1 = (m + 1) (do m > -1) Û m = 0

Câu 2.

Û sinxcosx + 2cos2x = 2cosx Û cosx = 0 hay sinx + cosx = 1

Û cosx = 0 hay sinx + cosx = Û cosx = 0 hay

Û x = hay

Câu 3:

Đặt t = -x

Hệ trở thành . Đặt S = y + t; P = y.t

Hệ trở thành

. Vậy nghiệm của hệ là

Cách khác : . Đặt u = x; v = y +

Hệ đă cho thành

Xét hàm f(t) = có f’(t) = < 0 với mọi t thỏa çtç£ 1

̃ f(u) = f(v + 1) ̃ u = v + 1 ̃ (v + 1)2 + v2 = 1 ̃ v = 0 hay v = -1 ̃ hay

̃ Hệ đă cho có nghiệm .

Câu 4.

= = = . Với

Đặt u = ln(x+1) du = ; dv = , chọn v = - 1

J = + = + = + ln3

= . Vậy I =

Cách khác : Đặt u = 1 + ln(x+1) ̃ du = ; đặt dv = , chọn v = , ta có :

+ = =

Câu 5.

Gọi M là trung điểm AB, ta có

 ; SH = CH.tan600 =

dựng D sao cho ABCD là h́nh thoi, AD//BC

Vẽ HK vuông góc với AD. Và trong tam giác vuông

SHK, ta kẻ HI là chiều cao của SHK.

Vậy khoảng cách d(BC,SA) chính là khoảng cách 3HI/2 cần t́m.

, hệ thức lượng

Câu 6. x + y + z = 0 nên z = -(x + y) và có 2 số không âm hoặc không dương. Do tính chất đối xứng ta có thể giả sử xy ³ 0

Ta có = ³

³ . Đặt t = , xét f(t) =

f’(t) =

̃ f đồng biến trên [0; +¥) ̃ f(t) ³ f(0) = 2

³ 30 = 1. Vậy P ³ 30 + 2 = 3, dấu “=” xảy ra Û x = y = z = 0. Vậy min P = 3.

A. Theo chương tŕnh Chuẩn :

Câu 7a.

Ta có : AN = ; AM = ; MN = ;

cosA = = ̃

(Cách khác :Để tính = 450 ta có thể tính

)

Phương tŕnh đường thẳng AM : ax + by = 0

Û 3t2 – 8t – 3 = 0 (với t = ) ̃ t = 3 hay

+ Với t = 3 ̃ tọa độ A là nghiệm của hệ : ̃ A (4; 5)

+ Với ̃ tọa độ A là nghiệm của hệ : ̃ A (1; -1)

Cách khác: A (a; 2a – 3), , MA = Û

Û a = 1 hay a = 4 ̃ A (1; -1) hay A (4; 5).

Câu 8a. Ta có M (-1; 0; 2) thuộc d, gọi = (1; 2; 1) là vectơ chỉ phương của đường thẳng d.

̃ ̃ IH =

̃ R = ̃ phương tŕnh mặt cầu (S) là : .

Câu 9.a. Û Û 30 = (n – 1) (n – 2), (do n > 0) ̃ n = 7

Gọi a là hệ số của x5 ta có Û

̃ 14 – 3i = 5 ̃ i = 3 và ̃ a = . Vậy số hạng chứa x5.x5.

B. Theo chương tŕnh Nâng cao :

Câu 7b Phương tŕnh chính tắc của (E) có dạng : . Ta có a = 4

(E )cắt (C ) tại 4 điểm tạo thành h́nh vuông nên :

M (2;-2) thuộc (E) . Vậy (E) có dạng

Câu 8b. ; A là trung điểm MN

; đi qua A và N nên phương tŕnh có dạng :

Câu 9b.

z = 1 + i;

Hoàng Hữu Vinh, Trần Quang Hiển

(Trường THPT Vĩnh Viễn – TP.HCM)

Hoàng Hữu Vinh, Trần Quang Hiển

(Trường THPT Vĩnh Viễn – TP.HCM)

Download file tại http://thuvienvatly.com/download/18669 hoặc http://thuvienvatly.com/download/18668

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Phương trình Lagrangian Mô hình Chuẩn
30/07/2016
Mô hình Chuẩn không đơn thuần là những hạt sơ cấp được sắp xếp trong một cái bảng ngăn nắp, đẹp đẽ. Mô hình Chuẩn
Detector vật chất tối nhạy nhất thế giới tìm thấy kết quả vô hiệu
25/07/2016
Thí nghiệm vật chất tối Xenon Lớn Dưới lòng đất (LUX) vừa thất bại, không phát hiện bất kì dấu hiệu nào của vật chất
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 8)
23/07/2016
ĐỘNG LƯỢNG VÀ XUNG LƯỢNG Một khái niệm vật lí quan trọng nữa là động lượng; nó là tích của khối lượng và vận tốc
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 7)
23/07/2016
3CƠ SỞ VẬT LÍ CỦA VŨ KHÍ THỜI XƯA Vai trò của vật lí học đối với các vũ khí chiến tranh thời xưa cũng giống như đối
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 6)
21/07/2016
ALEXANDER ĐẠI ĐẾ Một người từng sử dụng rộng rãi các vũ khí mới là Alexander Đại đế. Chào đời ở Pella, thủ đô
Lực hấp dẫn không bị ảnh hưởng bởi các điều kiện lượng tử
21/07/2016
Để kết nối vật lí cổ điển và vật lí lượng tử, các nhà vật lí đã sử dụng hai nguyên tử rubidium để xem các hiệu
Ảnh chụp 121 megapixel của Trái đất
19/07/2016
Vệ tinh thời tiết Elektro-L của Nga vừa thực hiện một bức ảnh chi tiết của Trái đất. Không giống như kiểu “Hòn ngọc
Nghiên cứu năng lượng tối lập bản đồ 1,2 triệu thiên hà trong vũ trụ sơ khai
19/07/2016
Các nhà thiên văn học thuộc dự án Khảo sát Quang phổ Dao động Baryon (BOSS) vừa phân tích dữ liệu từ 1,2 triệu thiên hà ở xa
Vui Lòng Đợi

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com