Những công cụ làm bằng ánh sáng: Giải Nobel Vật lí 2018 (Phần 1)

Những phát minh được tôn vinh bởi Giải thưởng Nobel Vật lí năm nay đã làm cách mạng hoá ngành vật lí học laser. Những vật cực nhỏ và những quá trình cực nhanh nay trình hiện dưới ánh sáng mới. Không chỉ vật lí học, mà cả hoá học, sinh học lẫn y học đều thu về những thiết bị chính xác để dùng trong nghiên cứu cơ bản và các ứng dụng thực tiễn.

Arthur Ashkin

Arthur Ashkin (1922-), quốc tịch Mĩ, ½ giải

Arthur Ashkin đã phát minh nhíp ánh sáng để gắp các hạt, các nguyên tử và phân tử bằng các ngón laser của chúng. Virus, vi khuẩn, và các tế bào sống khác cũng được gắp giữ, được khảo sát và thao tác mà không bị phá hỏng. Nhíp ánh sáng của Ashkin đã mở ra những cơ hội hoàn toàn mới cho việc quan sát và điều khiển sự vận hành của sự sống.

Gérard Mourou và Donna Strickland

Gérard Mourou (1944-), quốc tịch Pháp;
và Donna Strickland (1959-), quốc tịch Canada;½ giải

Gérard Mourou và Donna Strickland đã xây dựng nền tảng cho những xung laser nhanh nhất và cường độ mạnh nhất mà con người từng tạo ra. Kĩ thuật họ phát triển đã mở ra những lĩnh vực nghiên cứu hoàn toàn mới và đưa đến những ứng dụng công nghiệp và y học rộng rãi; ví dụ, hàng triệu ca phẫu thuật mắt được tiến hành mỗi năm nhờ những chùm laser sắc bén.

Chuyển động trong các chùm sáng

Arthur Ashkin từng có một giấc mơ: hãy tưởng tượng các chùm ánh sáng có thể thực hiện công và làm các vật dịch chuyển. Trong những tập phim viễn tưởng khởi đầu vào giữa những năm 1960, Star Trek, người ta có thể dùng các chùm tia máy kéo để hồi phục các vật thể, thậm chí là các tiểu hành tinh trong không gian, mà không hề chạm vào chúng. Tất nhiên, điều này nghe sặc mùi khoa học viễn tưởng thuần tuý. Chúng ta có thể cảm nhận được rằng các chùm tia sáng Mặt Trời mang năng lượng – đứng ngoài nắng người ta nóng lên – mặc dù áp suất từ chùm tia ấy quá nhỏ để chúng ta cảm nhận dù là một cú hích bé xíu thôi. Nhưng liệu lực tác dụng của nó có đủ để đẩy những hạt cực kì bé xíu và các nguyên tử hay không?

Ngay sau phát minh laser đầu tiên vào năm 1960, Ashkin đã bắt đầu làm thí nghiệm với thiết bị mới ấy tại Phòng thí nghiệm Bell ở ngoại ô New York. Trong một chùm laser, sóng ánh sáng chuyển động kết hợp, không giống như ánh sáng trắng thông thường trong đó các chùm tia thuộc mọi màu cầu vồng bị trộn lẫn và bị tán xạ theo mọi hướng.

Ashkin nhận ra rằng laser sẽ là công cụ hoàn hảo để khiến các chùm ánh sáng làm di chuyển các vật nhỏ. Ông rọi laser vào những hạt cầu trong suốt kích cỡ micro-mét và, yên tâm làm sao, ông thấy các hạt cầu ấy chuyển động. Đồng thời, Ashkin cảm thấy bất ngờ khi chứng kiến các hạt cầu bị hút về phía chính giữa chùm tia, nơi nó có cường độ mạnh nhất. Lời giải thích là cho dù chùm tia laser có tính định hướng rất cao, nhưng cường độ của nó giảm dần từ tâm ra ngoài. Do đó, áp suất bức xạ mà ánh sáng laser tác dụng lên các hạt cũng biến thiên, đẩy chúng về phía giữa chùm tia, giữ các hạt tại tâm của nó.

Đồng thời, để giữ các hạt theo hướng chùm tia, Ashkin lắp thêm một thấu kính mạnh để làm hội tụ ánh sáng laser. Khi ấy các hạt bị hút về phía điểm có cường độ ánh sáng lớn nhất. Thế là một kiểu bẫy ánh sáng ra đời; ngày nay nó được gọi là nhíp ánh sáng.

Cách Ashkin tạo ra bẫy ánh sáng

Cách Ashkin tạo ra bẫy ánh sáng

Hình 1. 1 Các hạt cầu nhỏ được làm cho chuyển động khi rọi chúng bằng ánh sáng laser. Tốc độ của chúng khớp với ước tính trên lí thuyết của Ashkin, chứng tỏ rằng chính áp suất bức xạ đang đẩy chúng đi.

2 Một hiệu ứng bất ngờ là gradient lực đẩy các hạt cầu về phía tâm của chùm tia, nơi ánh sáng có cường độ mạnh nhất. Hiện tượng này xảy ra là do cường độ của chùm tia giảm từ trong ra ngoài và tổng tất cả các lực đẩy lên hạt cầu ép chúng về phía tâm của chùm tia.

3 Bằng cách hướng chùm laser từ dưới lên, Ashkin làm các hạt cầu được nâng lơ lửng. Áp suất bức xạ cân bằng với trọng lực.

4 Chùm laser được hội tụ bằng một thấu kính. Ánh sáng bắt giữ các hạt, thậm chí cả vi khuẩn sống và các tế bào, trong những dụng cụ gọi là nhíp ánh sáng này.

>> Xem tiếp Phần 2

Nguồn: NobelPrize.org

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Tạo bảng điểm online

Các bài khác


Thêm một cột mốc mới về siêu dẫn nhiệt độ cao
17/02/2019
Các nhà vật lí Đức cho biết họ vừa đạt tới một cột mốc siêu dẫn mới. Theo bài báo của họ, họ đã thu được dòng
Bảng tuần hoàn hóa học tròn 150 tuổi (Phần 2)
17/02/2019
Thách thức phía trước Như vậy, bảng tuần hoàn của Mendeleev là lần đầu tiên một sơ đồ phân loại hóa học được sử
Bảng tuần hoàn hóa học tròn 150 tuổi (Phần 1)
17/02/2019
Có hàng nghìn phiên bản khác nhau của bảng tuần hoàn đã được người ta sáng tạo ra kể từ khi Dmitri Mendeleev phác họa nó
Bảng tuần hoàn hóa học tốc hành (Phần 13)
13/02/2019
Thuật giả kim Các triết gia Hi Lạp ít hứng thú với các vấn đề thực tiễn, thế nhưng một nhánh kĩ thuật hóa học đã ra
Bảng tuần hoàn hóa học tốc hành (Phần 12)
13/02/2019
Thuyết nguyên tử Triết gia Hi Lạp Leucippus có lẽ là người đầu tiên nêu ra ý tưởng rằng thế giới được làm bằng những
[Ebook] Giải đáp nhanh những câu hỏi lớn - Stephen Hawking
31/01/2019
Giải đáp nhanh những câu hỏi lớn là quyển sách cuối cùng của nhà vật lí danh tiếng Stephen Hawking. Quyển sách là bộ sưu tập
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 26)
31/01/2019
VẤN ĐỀ KINH ĐỘ Gilbert đã dựng nên khán đài khoa học khi chỉ ra rằng có hai hướng bắc: hướng bắc đúng và hướng bắc
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 25)
31/01/2019
WILLIAM GILBERT La bàn là dụng cụ dẫn đường chủ yếu của các nhà hàng hải. Thông thường, kim la bàn chỉ về hướng bắc, ngay

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com