Các nguyên tử không chuyển động khi bạn quan sát chúng

Một trong những dự đoán kì lạ nhất của thuyết lượng tử – rằng một hệ không biến đổi trong lúc bạn quan sát nó – đã được xác nhận bởi một thí nghiệm do các nhà vật lí Đại học Cornell thực hiện. Công trình của họ mang đến một phương pháp mới căn bản để điều khiển và xử lí các trạng thái lượng tử của các nguyên tử và có thể đưa đến những loại cảm biến mới.

Các thí nghiệm được tiến hành tại Phòng thí nghiệm Cực lạnh của phó giáo sư vật lí Mukund Vengalattore, người chủ trì chương trình đầu tiên của trường Cornell nghiên cứu vật lí học của các vật liệu được làm lạnh xuống các nhiệt độ thấp đến 0,000000001 độ trên không độ tuyệt đối. Nghiên cứu được mô tả trên số ra ngày 2 tháng 10 của tạp chí Physical Review Letters.

zenoeffectve

Các nghiên cứu sinh Airlia Shaffer, Yogesh Patil và Harry Cheung làm việc tại Phòng thí nghiệm Cực lạnh của phó giáo sư vật lí Mukund Vengalattore

Các nghiên cứu sinh Yogesh Patil và Srivatsan K. Chakram đã tạo ra và làm lạnh một chất khí gồm khoảng một tỉ nguyên tử Rubidium bên trong một buồng chân không và neo lượng khí đó giữa các chùm laser. Trong trạng thái đó, các nguyên tử sắp xếp thành một mạng lưới trật tự giống hệt như chúng sắp xếp trong một chất rắn kết tinh. Nhưng ở các nhiệt độ thấp như vậy, các nguyên tử có thể “chui hầm” từ vị trí này sang vị trí khác trong mạng tinh thể. Nguyên lí bất định Heisenberg phát biểu rằng vị trí và vận tốc của một hạt tương tác với nhau. Nhiệt độ là một số đo chuyển động của một hạt. Dưới điều kiện cực lạnh, vận tốc hầu như bằng không, vì thế rất nhiều bất định về vị trí; khi bạn quan sát chúng, các nguyên tử có khả năng ở chỗ này cũng như ở chỗ kia trong mạng tinh thể.

Các nhà nghiên cứu chứng minh được rằng họ có thể kìm hãm sự chui hầm lượng tử bằng cách đơn thuần là quan sát các nguyên tử. Cái gọi là “Hiệu ứng Zeno Lượng tử” này có xuất xứ từ một đề xuất hồi năm 1977 của E. C. George Sudarshan và Baidyanath Misra tại trường Đại học Texas ở Austin, họ đã chỉ ra rằng bản chất kì lạ của các phép đo lượng tử cho phép, trên nguyên tắc, một hệ lượng tử bị “đóng băng” bởi các phép đo lặp đi lặp lại.

Các thí nghiệm trước đây đã chứng minh Hiệu ứng Zeno Lượng tử với spin của các hạt sơ cấp. “Đây là quan sát đầu tiên của Hiệu ứng Zeno Lượng tử bằng phép đo không gian thực của chuyển động nguyên tử,” Vengalattore cho biết. “Đồng thời, do mức điều khiển cao mà chúng tôi có thể chứng minh trong các thí nghiệm của mình, chúng tôi có thể từ từ ‘điều chỉnh’ cách thức chúng tôi quan sát những nguyên tử này. Sử dụng sự điều chỉnh này, chúng tôi còn có thể chứng minh một hiệu ứng gọi là ‘cổ điển biểu kiến’ trong hệ lượng tử này.” Các hiệu ứng lượng tử mờ nhạt đi, và các nguyên tử bắt đầu hành xử như vật lí cổ điển trông đợi.

Các nhà nghiên cứu đã quan sát các nguyên tử dưới kính hiển vi bằng cách dùng một laser tạo ảnh độc lập rọi sáng chúng. Kính hiển vi quang học không thể nhìn thấy từng nguyên tử, nhưng laser tạo ảnh làm cho chúng phát huỳnh quang, và kính hiển vi thu được các lóe sáng đó. Khi tắt laser tạo ảnh, hoặc chỉ bật mờ, thì các nguyên tử tự do chui hầm. Nhưng khi chùm tia tạo ảnh được bật sáng hơn và phép đo được tiến hành thường xuyên hơn, thì sự chui hầm giảm đi đáng kể.

“Cách này mang lại cho chúng tôi một công cụ chưa có tiền lệ để điều khiển một hệ lượng tử, thậm chí có thể điều khiển từng nguyên tử một,” phát biểu của Patil, tác giả đứng tên đầu của bài báo. Các nguyên tử ở trạng thái này cực kì nhạy với các lực bên ngoài, cho nên công trình này có thể giúp người ta phát triển những loại cảm biến mới.

Các thí nghiệm được tiến hành là nhờ nhóm đã phát minh một kĩ thuật tạo ảnh mới lạ giúp người ta quan sát các nguyên tử cực lạnh trong khi giữ chúng trong trạng thái lượng tử giống nhau. “Các em sinh viên đã cống hiến rất nhiều và các em rất vui khi thấy những thí nghiệm này thành công đến vậy,” Vengalattore nói. “Bây giờ chúng tôi đã có khả năng độc đáo điều khiển cơ chế động lực học lượng tử thuần túy bằng cách quan sát.”

Tham khảo: Y. S. Patil, Measurement-Induced Localization of an Ultracold Lattice Gas, Physical Review Letters (2015). DOI: 10.1103/PhysRevLett.115.140402

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Các bài khác


Ai đã phát minh ra ABC?
16/02/2020
Lâu nay người ta vẫn cho rằng các thư lại Ai Cập đã sáng chế ra bảng chữ cái đầu tiên. Tuy nhiên, đó chưa phải là toàn bộ
Toán học cấp tốc (Phần 10)
15/02/2020
e e là một số siêu việt và là một trong những hằng số cơ bản của toán học. Được gọi là hằng số Euler, nó có giá trị
Toán học cấp tốc (Phần 9)
15/02/2020
Số đại số và số siêu việt Một số đại số là nghiệm của một phương trình chứa lũy thừa của biến x, một đa thức
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 62)
15/02/2020
Chương 18 BOM KHINH KHÍ, TÊN LỬA LIÊN LỤC ĐỊA, LASER VÀ TƯƠNG LAI Sau sự phát triển bom nguyên tử, bản chất của chiến tranh
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 61)
15/02/2020
TIẾP TỤC DỰ ÁN MANHATTAN Nghiên cứu Dự án Manhattan đã khởi động. Vấn đề chính là tách U-235 ra khỏi uranium thiên nhiên.
Tương lai của tâm trí - Michio Kaku (Phần 42)
15/02/2020
NÓ THỰC SỰ LÀ MỘT BỘ NÃO? Mặc dù các nhà khoa học này tuyên bố rằng mô phỏng máy tính của họ về não sẽ bắt đầu
Tương lai của tâm trí - Michio Kaku (Phần 41)
15/02/2020
XÂY DỰNG MỘT BỘ NÃO Giống như nhiều đứa trẻ khác, tôi đã từng thích tháo rời đồng hồ, tháo rời chúng, vặn hết ốc
Bảng tuần hoàn hóa học tốc hành (Phần 88)
14/02/2020
Neptunium Vào năm 1940, các nhà vật lí Mĩ Edwin McMillan (1907–91) và Philip Abelson (1913–2004) đã tạo ra nguyên tố đầu tiên nặng

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com