Xác nhận tốc độ ánh sáng không phụ thuộc năng lượng hạt ánh sáng

Một trăm năm sau khi Albert Einstein thiết lập lí thuyết tương đối rộng, một đội nghiên cứu quốc tế vừa đề xuất một bằng chứng thực nghiệm khác cho lí thuyết của ông. Trong một bài báo trên tạp chí Nature Physics ngày 16/3/2015, các nhà nghiên cứu từ Đại học Hebrew Jerusalem, Đại học Mở Israel, Đại học Sapienza Rome, và Đại học Montpellier ở Pháp, mô tả một bằng chứng cho một trong những giả thuyết cơ bản của thuyết tương đối rộng: quan niệm rằng tất cả các hạt ánh sáng, hay photon, truyền đi với tốc độ chính xác bằng nhau.

Các nhà nghiên cứu đã phân tích số liệu, thu được bởi Kính thiên văn vũ trụ Tia gamma Fermi của NASA, thời gian tới nơi của các photon đến từ một vụ nổ tia gamma ở xa. Số liệu cho thấy các photon truyền đi hàng tỉ năm từ vụ nổ ở xa đến Trái đất đều tới nơi trước sau trong một phần nhỏ của một giây.

Tinh vân Carina

Đây là vùng “Cột Nam” của vùng đang hình thành sao gọi là Tinh vân Carina. Giống như việc bổ một quả dưa và tìm hạt của nó, kính thiên văn hồng ngoại “khai mở” đám mây tăm tối này để làm rõ phôi sao nhồi nhét bên trong những cột bụi dày hình ngón tay. Ảnh: NASA

Kết quả này cho thấy các photon đó đều chuyển động với tốc độ như nhau, mặc dù các photon khác nhau có năng lượng khác nhau. Đây là một trong những phép đo tốt nhất từ trước đến nay của sự độc lập của tốc độ ánh sáng với năng lượng của các hạt ánh sáng.

Ngoài việc xác nhận thuyết tương đối rộng, quan sát trên còn bác bỏ một trong những quan điểm có sức hút để thống nhất thuyết tương đối rộng và thuyết lượng tử. Trong khi hai lí thuyết này là hai trụ cột của vật lí học ngày nay, nhưng chúng vẫn không tương thích với nhau, và có một mâu thuẫn nội tại giữa hai lí thuyết phần nào dựa trên nguyên lí bất định Heisenberg vốn là trọng tâm của thuyết lượng tử.

Một trong những nỗ lực nhằm dung hòa hai lí thuyết là khái niệm “bọt không-thời gian”. Theo khái niệm này, không gian cấp vi mô là không liên tục, mà thay vậy nó có một cấu trúc dạng bọt. Kích cỡ của các phần tử bọt này nhỏ đến mức khó tưởng tượng và hiện tại không thể đo trực tiếp được. Tuy nhiên, các hạt ánh sáng đang lan truyền bên trong bọt này sẽ bị ảnh hưởng bởi cấu trúc dạng bọt, và điều này sẽ làm cho chúng truyền đi ở những tốc độ hơi sai khác tùy thuộc vào năng lượng của chúng.

Nhưng thí nghiệm này cho thấy điều ngược lại. Thực tế tất cả các photon với năng lượng khác nhau tới nơi không trễ hẹn so với nhau cho thấy một cấu trúc dạng bọt như thế, nếu rốt cuộc nó có tồn tại, có kích cỡ nhỏ hơn trước đây người ta trông đợi.

“Khi chúng tôi bắt đầu phân tích của mình, chúng tôi không trông đợi thu được một số đo chính xác như thế,” phát biểu của giáo sư Tsvi Piran thuộc Viện Vật lí Racah Đại học Hebrew và là người đứng đầu nghiên cứu trên. “Giới hạn mới này là ở mức mà các lí thuyết lực hấp dẫn lượng tử trông đợi và có thể hướng chúng ta đến chỗ làm thế nào kết hợp thuyết lượng tử và thuyết tương đối.”

Tham khảo: A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation, Nature, 2015. DOI: 10.1038/nphys3270

Nguồn: PhysOrg.com

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Các bài khác


Sơ lược từ nguyên vật lí hạt (Phần 6)
17/10/2017
hadron (hadros + on) Người đặt tên: Lev Okun, 1962 Thuật ngữ “hadron” được đặt ra tại Hội nghị Quốc tế về Vật lí Năng
Sơ lược từ nguyên vật lí hạt (Phần 5)
17/10/2017
boson W (weak + boson) Người đặt tên: Lý Chính Đạo và Dương Chấn Ninh, 1960 Là hạt mang lực yếu có mặt trong các tương tác
Chúng ta đã tìm thấy một nửa vũ trụ
15/10/2017
Một nửa lượng vật chất bình thường trong vũ trụ trước đây vắng mặt trong các quan sát mà không ai lí giải được, nay
Giải Nobel Vật Lý 2017 được trao cho việc dò tìm sóng hấp dẫn
09/10/2017
Rainner Weiss, Barry Barish và Kip Thorne chia nhau giải thưởng cho đóng góp của họ ở LIGO. DIVIDE CASTELVECCHI - Nature Ba nhà vật
Làm thế nào tạo ra á kim không chứa kim loại?
22/09/2017
Một loại vật liệu mới gọi là “á kim thung lũng spin” vừa được các nhà vật lí ở Nga, Nhật Bản và Mĩ dự đoán dựa
Thiên văn học là gì?
20/09/2017
Loài người từ lâu đã hướng mắt lên bầu trời, tìm cách thiết đặt ý nghĩa và trật tự cho vũ trụ xung quanh mình. Mặc dù
Một số thông tin thú vị về Mặt trăng
16/09/2017
Mặt trăng là vật thể dễ tìm thấy nhất trên bầu trời đêm – khi nó hiện diện ở đó. Vệ tinh thiên nhiên duy nhất của
Sơ lược từ nguyên vật lí hạt (Phần 4)
27/08/2017
boson (Bose + on) Người đặt tên: Paul Dirac, 1945 Boson được đặt theo tên nhà vật lí Satyendra Nath Bose. Cùng với Albert Einstein,
Vui Lòng Đợi

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com