Lịch sử vũ trụ học (Phần 22)

Chương 7

CUỘC HÀNH TRÌNH VẪN TIẾP TỤC

 

Những câu trả lời mới và những câu đố mới

Mô hình Big Bang chuẩn, đã thắng lợi rực rỡ hồi thập niên 1960 so với một lí thuyết vũ trụ học đối chọi, hoan hỉ ngự trị suốt thời gian còn lại của thế kỉ 20. Mô hình chuẩn đó còn thu được một kết quả đáng kể: lí thuyết vũ trụ học lạm phát.

Năm 1979, một nhà vật lí hạt trẻ người Mĩ, Alan Guth, đề xuất rằng những đặc điểm vũ trụ học quan trọng có thể giải thích dưới dạng những hệ quả tự nhiên và không thể tránh được của những lí thuyết mới của vật lí hạt. Guth đã chỉ rõ làm sao một sự “lạm phát” to lớn có thể xảy ra trong phần rất nhỏ đầu tiên của một giây của sự tiến hóa của vũ trụ. Trong khoảng thời gian nhỏ xíu này, vũ trụ có thể dãn nở ở tốc độ kinh khủng, sau đó thì chậm dần. Sau đó, lí thuyết “vũ trụ lạm phát” hợp nhất với lí thuyết Big Bang chuẩn.

Giữ vai trò quan trọng ở đây là sở thích triết lí: những đặc trưng vũ trụ đó phải được giải thích dưới dạng những hệ quả tự nhiên và không thể tránh khỏi của lí thuyết, chứ không phải những thông số đơn thuần độc đoán do quan sát mang lại. Cũng sở thích triết lí đó đã dẫn đường cho Copernicus và những nhà vũ trụ học buổi đầu khác khi họ lựa chọn giữa những lí thuyết đối chọi nhau không thể nào tách riêng ra bằng các quan sát.

alt

Alan Guth

alt

Hấp dẫn làm bẻ cong ánh sáng, như Einstein chỉ rõ. Trong bức ảnh do Kính thiên văn vũ trụ Hubble chụp này, một cụm ba thiên hà to lớn cách xa 7 tỉ năm ánh sáng (màu cam) đang bẻ cong ánh sáng tạo ra nhiều ảnh của một thiên hà cách xa 11 tỉ năm ánh sáng (các đốm trắng). Những “kính thiên văn” như thế được sử dụng để nghiên cứu những thiên hà khó nhận thấy bằng cách khác được hình thành sớm trong lịch sử vũ trụ của chúng ta, mang lại bằng chứng về tuổi và thành phần của vũ trụ.

Đặc điểm mà lí thuyết của Guth cố gắng giải thích là mật độ khối lượng của vũ trụ. Như ông và nhiều nhà khoa học khác nhận thấy, nếu mật độ vượt quá một giá trị tới hạn nhất định, thì lực hút hấp dẫn giữa từng khối lượng lên khối lượng khác sẽ làm chậm dần sự dãn nở của vũ trụ - và cuối cùng làm đảo ngược tiến trình, hợp nhất mọi thứ trong một vụ “co lại lớn”. Nếu mật độ nhỏ hơn con số tới hạn thì vũ trụ sẽ dãn nở mãi mãi, kết quả là một sự “lạnh lẽo lớn”. Ở mật độ tới hạn, vũ trụ “phẳng” thu được sẽ tiếp tục dãn nở, nhưng ở tốc độ ngày càng chậm.

Vấn đề là ở chỗ mật độ khối lượng của vũ trụ lúc ra đời của nó gần gũi không ngờ với mật độ tới hạn. Bằng không thì chúng ta đã chẳng có mặt ở đây lúc này. Không biết mật độ ban đầu của vũ trụ có khác với giá trị thực sự của nó một lượng nhỏ cỡ một phần 10 lũy thừa 60 để cho tất cả vật chất trước đây lâu lắm đã co lại thừa nhận vụ co lớn hay là xé toạc ra xa thừa nhận sự dãn nở của sự lạnh lẽo lớn. Khi đó sẽ không có thời gian cho các hành tinh hình thành và các sinh vật sống tiến hóa. Nên khi đó sẽ không có sự sống thông minh để thưởng ngoạn thực tế là mật độ có chính xác là cái cần thiết để thoát khỏi sự lãng quên hay không.

Một nguyên lí của loài người ?

Các nhà triết học đã nâng những tư tưởng như thế thành “nguyên lí vũ trụ của con người”. Theo sự hình thành thiếu sức mạnh của nó, nguyên lí đó phát biểu rằng vũ trụ phải tồn tại làm sao cho nó thu nhận và duy trì được sự sống. Từ câu nói của Descartes “Tôi tư duy, vì thế tôi tồn tại”, chúng ta có thể đi đến nói “Tôi tồn tại, vì thế bản chất của vũ trụ cho phép tôi tồn tại”. Sự hình thành nên các sao, các hành tinh và sự sống cũng sẽ không thể nào có được bởi những thay đổi nhỏ ở giá trị của những hằng số vật lí khác, trong đó có cường độ của các lực cơ bản, ví dụ như lực hấp dẫn và lực điện từ và khối lượng và điện tích của các hạt hạ nguyên tử.

Tập hợp những sự trùng hợp ngẫu nhiên khác thường đó hình như là cần thiết cho sự sống tiến triển ở quy mô lớn. Không biết có nhiều vô số vũ trụ, mỗi vũ trụ có những con số hơi khác nhau một chút cho những hằng số cơ bản, hay cả những định luật của tự nhiên hơi khác nhau một chút… và chúng ta là một trong vài số giống loài giữ được sự sống thông minh ? Việc hỏi tại sao chúng ta lại ở trong một vũ trụ vừa đủ thích hợp cho sự sống, chứ không ở trong một trong số những vũ trụ khác, giống như việc một con cá hỏi tại sao nó lại không sống ở trên cạn. Các nhà vật lí cơ bản đang nghiên cứu phương pháp mô tả một “đa vũ trụ” như thế. Hay là có một vũ trụ độc lập, được tạo ra và điều chỉnh tốt sao cho sự sống thông minh có thể tiến hóa trong nó (phiên bản “mạnh” của nguyên lí của loài người) ? Nếu như thế thì một số người sẽ cho rằng sự điều chỉnh chính xác đó ngụ ý cách sắp xếp thông minh.

alt

Newton nghĩ rằng có sự can thiệp của thần thánh giữ các hành tinh trên quỹ đạo của chúng. Laplace chứng minh các định luật cơ học của Newton sẽ tự động mang lại điều đó. Nhưng tại sao các định luật đó lại hoạt động tốt như thế ?

Điều này nghe giống hệt như quan niệm hồi thế kỉ 18 về Chúa sáng tạo, người đã tạo ra vũ trụ và để cho nó tự tiến hóa. Ý tưởng đấng sáng tạo này hoàn toàn khác với những khẳng định hiện nay, trái với lí thuyết tiến hóa, về “sự sắp xếp thông minh” đang tiến triển của các cơ quan sống. Với những câu hỏi như thế, vũ trụ đã đi từ địa hạt khoa học sang đức tin và tôn giáo.

Kiểm tra các lí thuyết

Vấn đề tại sao mật độ của vũ trụ sau Big Bang tiến rất gần với mật độ tới hạn được gọi là “bài toán phẳng”. Mô hình Big Bang chuẩn không đưa ra câu trả lời, mà “đó chỉ là cách thức nó như thế”. Tuy nhiên, theo lí thuyết lạm phát, một sự bùng nổ ngắn của sự dãn nở theo hàm mũ tự động sẽ làm phẳng mọi thứ, khiến cho mật độ vật chất, cho dù giá trị ban đầu của nó là gì, tiến tới hầu như chính xác bằng với mật độ tới hạn. Điều này không chỉ trả lời tại sao những con số cơ bản khác chỉ vừa thích hợp cho sự tồn tại của sự sống, mà nó còn thật sự đưa ra một lời giải cho bài toán phẳng.

Lí thuyết lạm phát có thể giải quyết được một vấn đề khác, đó là “khoảng cách đường chân trời”. Đây là khoảng cách cực đại mà ánh sáng có thể truyền đi kể từ lúc bắt đầu của vũ trụ Big Bang (những ước tính hiện nay đặt giá trị này giữa 13 và 15 tỉ năm ánh sáng). Bức xạ nền vũ trụ quan sát thấy đều đặn trong toàn bộ thể tích không gian lớn hơn khoảng cách đường chân trời nhiều. Làm thế nào những vùng không gian cách xa nhau trước đây có thể tự điều chỉnh để phát ra mức bức xạ giống hệt nhau như thế ? Một vũ trụ lạm phát sẽ nhỏ hơn nhiều trong pha ban đầu của nó so với mô hình Big Bang chuẩn mang lại. Thật vậy, nó đủ nhỏ cho ánh sáng băng qua trong một phần nhỏ xíu đầu tiên của một giây. Như vậy, mọi bộ phận của vũ trụ có thể tiến đến một nhiệt độ đồng đều trước khi quá trình lạm phát khởi đầu.

Sự đồng đều là tốt, nhưng có thể có quá nhiều thứ tốt. Thiên hà của chúng ta, hành tinh của chúng ta, và cả vũ trụ nữa, hơi không đồng đều trong một vũ trụ đồng đều nói chung. Sự không đồng đều căn bản nhỏ của vật chất cần thiết cho hấp dẫn có thể phát sinh để hút vật chất lại với nhau thành thiên hà và những cấu trúc vũ trụ khác. Nhưng tại sao một phần của vũ trụ sơ khai lại khác những phần kia ? Thật ra, không-thời gian luôn luôn dao động ở một kích thước hạ vi mô, theo lí thuyết “bất định” cơ sở của cơ học lượng tử. Những dao động này cực kì nhỏ, nhưng trong quá trình lạm phát chúng sẽ kéo căng ra hết sức. Sự gấp nếp thu được trong không-thời gian có thể mang lại một sự khởi đầu cho sự kết khối lại với nhau của những cấu trúc kích thước lớn như thiên hà hay các cụm thiên hà.

alt

Mật độ các thiên hà trong một góc nêm bầu trời đến chừng 10 tỉ năm ánh sáng (màu đỏ là dày đặc nhất). Những dao động lượng tử nhỏ trong Big Bang ban đầu đã được khuếch đại khi không gian dãn nở đồng thời lực hấp dẫn hút vật chất lại với nhau. Việc đó tạo ra sự tập trung các thiên hà với rất nhiều khoảng trống giữa chúng. Những phép đo kích thước của cấu trúc “sủi bọt” này cho biết nhiều về bản chất hiện tại của vật chất trong vũ trụ cũng như lịch sử của nó.

Các lí thuyết vũ trụ học sống hay chết là do các tiên đoán của chúng. Các nhà thiên văn vật lí George Smoot và John Mather đề xuất tìm kiếm những chênh lệch nhỏ xíu khỏi sự đồng đều trong bức xạ nền vũ trụ mà lí thuyết lạm phát tiên đoán, và NASA đã chế tạo một vệ tinh đắt tiền có khả năng thực hiện công việc đó. Năm 1992, họ báo cáo đã tìm thấy những nếp gấp trong bức xạ nền, có kích thước như tiên đoán cho mầm mống của vũ trụ của chúng ta phát sinh.

alt

“Bản đồ vũ trụ sơ khai” do vệ tinh khám phá bức xạ vũ trụ của NASA (COBE) mang lại. Bức ảnh màu không thật này biểu diễn những dao động nhỏ xíu ở cường độ của nền vi sóng vũ trụ, “hóa thạch” của những dao động ngẫu nhiên bên trong quả cầu lửa Big Bang trong thời khắc đầu tiên của sự tồn tại của nó.

 

Nguồn: AIP

Còn tiếp...

Phần 1 | Phần 2 | Phần 3 | Phần 4 | Phần 5 | Phần 6 | Phần 7 | Phần 8 | Phần 9 | Phần 10 | Phần 11 | Phần 12 | Phần 13 | Phần 14 | Phần 15 | Phần 16 | Phần 17 | Phần 18 | Phần 19 | Phần 20 | Phần 21

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Downlaod video thí nghiệm

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


M106: Thiên hà xoắn ốc có tâm khác thường
21/07/2019
Điều gì đang xảy ra tại tâm của thiên hà xoắn ốc M106? Là một đĩa sao và chất khí xoáy tít, diện mạo của M106 nổi bật
5 lí do nên thám hiểm các tiểu hành tinh
21/07/2019
Chính vào hôm Trái Đất sống sót sau một vụ va chạm suýt xảy ra với tiểu hành tinh 367943 Duende, các máy quay ở Nga đã bất
Vật lí Lượng tử Tốc hành (Phần 64)
21/07/2019
Lực hấp dẫn lượng tử Lực hấp dẫn là lực duy nhất chưa dung hòa được với cơ học lượng tử. Thuyết tương đối rộng
Vật lí Lượng tử Tốc hành (Phần 63)
21/07/2019
Điện động lực học lượng tử Điện động lực học lượng tử (QED – quantum electrodynamics) là lí thuyết trường mô tả
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 32)
21/07/2019
Khám phá vành sao Thổ 1610 Galileo Galilei (1564–1642), Giovanni Domenico Cassini (1625–1712), Christiaan Huygens (1629–1695) “Các vành sao
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 31)
21/07/2019
Các định luật Kepler về chuyển động hành tinh 1609 Johannes Kepler (1571–1630) “Mặc dù Kepler ngày nay chủ yếu được nhớ
Sai lệch 9 phần trăm
10/07/2019
Một sai lệch giữa các phép đo về hằng số Hubble khiến các nhà khoa học phát vấn liệu có điều gì đó không đúng trong hiểu
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 44)
10/07/2019
Chương 12 HÊ, NHÌN ĐI… NÓ BAY KÌA! Khí động lực học và những máy bay đầu tiên Không bao lâu sau khi những máy bay đầu tiên

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com