Toán học cấp tốc (Phần 18)

Lí thuyết xác suất

Xác suất là một nhánh toán học nghiên cứu việc đo và dự báo khả năng của những kết cục nhất định. Nó vừa là ứng dụng của lí thuyết tập hợp, vừa tự nó là một lí thuyết hoàn toàn mới. Một cách nhìn vào các xác suất là coi một phạm vi kết quả khả dĩ là các phần tử của một tập hợp. Ví dụ, gieo ngẫu nhiên một đồng xu ba lần. Tập hợp mọi kết cục khả dĩ có thể biểu diễn bằng các phần tử chứa ba kí tự, mỗi kí tự cho một kết quả gieo, với N cho mặt ngửa và S cho mặt sấp. Rõ ràng tập hợp này có tám phần tử:

{SSS, SSN, SNS, SNN, NSS, NSN, NNS, NNN}

Vì phải xảy ra một trong những kết cục này, nên tổng của tất cả những xác suất này phải bằng 1, và nếu đồng xu được gieo ngẫu nhiên và mỗi kết cục có khả năng như nhau, thì khả năng của mỗi trường hợp là 1/8.

Những câu hỏi phức tạp hơn về xác suất có thể được trả lời bằng cách xét những kết cục nhất định là các tập con của tập hợp gồm mọi kết cục khả dĩ trước đó.

Chẳng hạn, ta có thể thấy ngay rằng tập hợp các kết cục có đúng hai mặt ngửa gồm ba phần tử, vậy nên có xác suất là 3/8.

Thế còn xác suất để có đúng một lần gieo là ngửa, biết rằng ít nhất một lần gieo là sấp? Nếu chúng ta biết ít nhất một lần gieo là sấp thì ta có thể ràng buộc tập hợp kết cục như sau:

{SSS, SSN, SNS, SNN, NSS, NSN, NNS}

Ba phần tử của tập hợp này, trong số bảy cả thảy, có đúng một mặt ngửa – vì thế xác suất là 3/7.

Những lập luận tương tự nhưng tổng quát hơn đã cho phép các nhà toán học phát triển một tập hợp tiên đề cho xác suất, viết theo các thuật ngữ xác suất về tập hợp và các phép toán được định nghĩa trên tập hợp.

 

Tập lũy thừa

Tập lũy thừa của một tập S cho trước là tập hợp gồm mọi tập con của S, bao gồm cả S và tập rỗng. Thế nên giả sử S = {0, 1}, thì tập lũy thừa của nó, kí hiệu là P(S) là {F, {0}, {1}, {0, 1}}.

Nhà toán học Đức Georg Cantor đã dùng tập lũy thừa chứng minh rằng có nhiều vô số họ vô cực càng lúc càng lớn, sử dụng một lập luận có phần giống, dù rằng có trước, nghịch lí thợ cạo.

Luận cứ đường chéo của Cantor đã chỉ ra rằng có ít nhất hai kiểu tập hợp vô hạn – tập hợp đếm được, hay lập danh sách được, và tập hợp không đếm được ví dụ như tập liên tục, tập số thực. Bây giờ Cantor chứng minh rằng nếu S là một tập vô hạn thì tập lũy thừa của nó sẽ luôn lớn hơn S, hiểu theo nghĩa là chẳng có cách nào lấy tương ứng các phần tử của S với các phần tử của P(S) sao cho mỗi phần tử trong một tập hợp gắn liền với một và chỉ một phần tử thuộc tập hợp kia. Nói cách khác, lực lượng của P(S) luôn lớn hơn lực lượng của S.

Tập lũy thừa

TOÁN HỌC CẤP TỐC
Paul Glendinning | Bản dịch của TVVL

<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Tạo bảng điểm online

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Sao neutron to bao nhiêu?
18/09/2020
Các nhà thiên văn vật lí đang kết hợp nhiều phương pháp để làm hé lộ các bí mật của một số vật thể lạ lùng nhất
Giải chi tiết mã đề 219 môn Vật Lý đề thi TN THPT 2020 (đợt 2)
04/09/2020
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 96)
04/09/2020
Khám phá Hải Vương tinh 1846 John Couch Adams (1819–1892), Urbain Jean Joseph Le Verrier (1811–1877), Johann Gottfried Galle (1812–1910) “Bài
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 95)
04/09/2020
Các định luật Kirchhoff về mạch điện 1845 Gustav Robert Kirchhoff (1824–1887) Khi vợ của Gustav Kirchhoff, Clara, qua đời, nhà vật
Lực nâng từ tách biệt tế bào sống với tế bào chết
27/08/2020
Một kiểu lực nâng từ có thể tách các tế bào sống với tế bào chết mà không làm thay đổi hay làm hỏng chúng. Quá trình có
LHC tạo ra vật chất từ ánh sáng
26/08/2020
Các nhà khoa học làm việc ở một thí nghiệm tại Máy Va chạm Hạt nặng Lớn đã chứng kiến các hạt W khối lượng lớn xuất
PHẢN BIỆN ĐỀ THI MÔN VẬT LÝ TNPTQG NĂM HỌC 2019 – 2020 VÀ NHỮNG TRĂN TRỞ CỦA NGƯỜI CẦM PHẤN
20/08/2020
Khám phá sóng áp suất khí quyển toàn cầu sau 220 năm tìm kiếm
20/08/2020
Một nhà vật lí thế kỉ 18 lần đầu tiên dự đoán sự tồn tại của một dàn hợp xướng sóng khí quyển quét qua Trái đất.

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com