Toán học – Những điều kì thú và những mốc son lịch sử (Phần 27)

97. De Morgan, sống vào thế kỉ 19, từng nêu câu đố sau đây về tuổi của ông:

Tôi x tuổi vào năm x2. Hỏi tôi sinh năm bao nhiêu?

Câu đố là một câu hỏi nêu ra có vẻ bí hiểm.

Bình phương các tuổi có thể được lập như sau. Bắt đầu với 40, ta có

402 = 1600

412 = 1681

422 = 1764

432 = 1849

442 = 1936

Vì De Morgan sống vào thế kỉ 19, tức là trong giai đoạn 1801-1900, nên ông 43 tuổi vào năm 1849, và do đó, ông sinh vào năm 1806.

98. Các hệ phương trình vô định được giải như thế nào?

Khi cho hai phương trình vô định theo ba biến, thì một biến bất kì, ví dụ z, được loại trừ và ta thu được một phương trình vô định hai biến.

Phương trình đó được giải như thường lệ.

Xét bài toán sau đây:

Chi phí cho một bữa tiệc 44 người là 451 rupee. Nếu mỗi người đàn ông chi 15 rupee, mỗi phụ nữ chi 12 rupee và mỗi trẻ em chi 5 rupee, thì có bao nhiêu người thuộc mỗi nhóm?

Gọi x, y, z lần lượt là số lượng đàn ông, phụ nữ và trẻ em, thì ta có

x + y + z = 44                                                       (1)

15x + 12y + 5z = 451                                         (2)

Nhân phương trình thứ nhất với 5 rồi trừ khỏi phương trình thứ hai để loại trừ z, ta được

10x + 7y = 231                                                    (3)

Đây là một phương trình hai biến và có thể giải cho các giá trị nguyên dương như thông thường.

Chia phương trình cho hệ số nhỏ là 7, ta được

Thay giá trị này của x vào (3), ta được y = 33 – 10p.

Thay x và y vào (1) ta được z = 3p + 11.

Bây giờ, p chỉ có thể nhận các giá trị 1, 2 và 3, bởi vì các giá trị lớn hơn của p khiến y bị âm.

Như vậy, nghiệm đầy đủ được cho bởi

p = 1, x = 7, y = 23, z = 14;

p = 2, x = 14, y = 13, z = 17;

p = 3, x = 21, y = 3, z = 20.

99. Phương trình sau đây được giải như thế nào theo nghiệm dương:

2xy – 4x2 + 12x – 5y = 11?

Phương trình đã cho có thể được viết là

2xy – 5y = 4x2 – 12x + 11

hay (2x – 5)y = 4x2 – 12x + 11

Biểu diễn y theo x, ta được

± 1, ± 2, ± 3 và ± 6 là những ước số duy nhất của 6, nên

2x – 5 = ± 1, ± 2, ± 3 và ± 6.

Trong số này 2x – 5 = ± 2 và ± 6 không mang lại giá trị nguyên của x, và buộc phải loại bỏ.

2x – 5 = ± 1 và 2x – 5 = ± 3 cho x = 3, 2, 4 và 1.

Những giá trị này cho ta:

x = 3, y = 11;       x = 2, y = - 3;

x = 4, y = 9;          x = 1, y = - 1.

Trong số này, các nghiệm có thể nhận là

x = 3, y = 11;       x = 4, y = 9.

100. Phương trình vô định tổng quát bậc hai là gì?

Phương trình bậc hai: Ny2 + 1 = x2,

trong đó N là một số nguyên dương nhưng không phải số chính phương, được gọi là phương trình vô định tổng quát bậc hai.

Nó luôn có thể được giải theo nghiệm nguyên dương, số lượng nghiệm là không hạn chế.

Phương pháp giải nghiệm hơi khó và không thích hợp để nêu ra ở đây.

101. Phương trình 61y2 + 1 = x2 có gì nổi bật?

Đây là một trường hợp đặc biệt của phương trình tổng quát vừa nói ở trên, trong đó N nhận giá trị 61.

Bhaskaracharya, nhà toán học vĩ đại người Hindu, nổi tiếng với việc thu được nghiệm nguyên tổng quát của phương trình này bởi cái gọi là “phương pháp tuần hoàn”.

Để minh họa cho phương pháp đó, trong quyển sách của ông, “Bija ganita”, được viết vào năm 1150, ông đã nêu ví dụ 61y2 + 1 = x2.

Cái nổi bật là 500 năm sau đó, bài toán này lại được nhà toán học lỗi lạc người Pháp Fermat nêu ra cho người bạn của ông, Frenicle, vào năm 1657.

Nhưng rồi nó được Euler giải vào năm 1732.

Bhaskaracharya nêu ra nghiệm sau đây:

x = 1, 776, 319, 049,

y = 22, 615,390

Toán học – Những điều kì thú và những mốc son lịch sử
A.L. Audichya
Trần Nghiêm dịch
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Sơ lược từ nguyên vật lí hạt (Phần 6)
17/10/2017
hadron (hadros + on) Người đặt tên: Lev Okun, 1962 Thuật ngữ “hadron” được đặt ra tại Hội nghị Quốc tế về Vật lí Năng
Sơ lược từ nguyên vật lí hạt (Phần 5)
17/10/2017
boson W (weak + boson) Người đặt tên: Lý Chính Đạo và Dương Chấn Ninh, 1960 Là hạt mang lực yếu có mặt trong các tương tác
Chúng ta đã tìm thấy một nửa vũ trụ
15/10/2017
Một nửa lượng vật chất bình thường trong vũ trụ trước đây vắng mặt trong các quan sát mà không ai lí giải được, nay
Giải Nobel Vật Lý 2017 được trao cho việc dò tìm sóng hấp dẫn
09/10/2017
Rainner Weiss, Barry Barish và Kip Thorne chia nhau giải thưởng cho đóng góp của họ ở LIGO. DIVIDE CASTELVECCHI - Nature Ba nhà vật
Làm thế nào tạo ra á kim không chứa kim loại?
22/09/2017
Một loại vật liệu mới gọi là “á kim thung lũng spin” vừa được các nhà vật lí ở Nga, Nhật Bản và Mĩ dự đoán dựa
Thiên văn học là gì?
20/09/2017
Loài người từ lâu đã hướng mắt lên bầu trời, tìm cách thiết đặt ý nghĩa và trật tự cho vũ trụ xung quanh mình. Mặc dù
Một số thông tin thú vị về Mặt trăng
16/09/2017
Mặt trăng là vật thể dễ tìm thấy nhất trên bầu trời đêm – khi nó hiện diện ở đó. Vệ tinh thiên nhiên duy nhất của
Sơ lược từ nguyên vật lí hạt (Phần 4)
27/08/2017
boson (Bose + on) Người đặt tên: Paul Dirac, 1945 Boson được đặt theo tên nhà vật lí Satyendra Nath Bose. Cùng với Albert Einstein,
Vui Lòng Đợi

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com