Toán học – Những điều kì thú và những mốc son lịch sử (Phần 25)

79. Phải chăng phương trình bậc năm là không thể giải được bằng cách đưa nó về phương trình bậc bốn?

Chúng ta đã thấy rằng lời giải của một phương trình phụ thuộc vào lời giải của một phương trình bậc thấp hơn. Sử dụng nguyên lí này, một nhà toán học người Pháp, Lagrange, đã cố giải phương trình bậc năm nhưng nó lại dẫn ông tới một phương trình bậc sáu. Đây là một dấu hiệu gián tiếp rằng một phương trình bậc năm tổng quát không thể giải được bằng những phương pháp như thế. Lagrange đã bỏ qua gợi ý đó.

80. Abel đã chứng minh cái gì?

Abel, một nhà toán học người Na Uy, vào năm 1824 đã chứng minh kết quả nổi bật rằng phương trình đại số tổng quát có bậc cao hơn bốn là không thể giải được bằng cách khai căn.

81. Nhưng một số phương trình có bậc cao hơn bốn như x6 – 1 = 0 hoàn toàn có thể giải được bằng cách khai căn!

Các phương trình như x6 – 1 = 0, x­8 – 2 = 0, xn – a = 0 hoàn toàn có thể giải được bằng cách khai căn mặc dù mỗi phương trình này có bậc cao hơn bốn. Không chỉ những phương trình này, mà còn nhiều phương trình khác có bậc tùy ý, chúng có thể được giải bằng phương pháp khai căn, cho nên vấn đề lúc này là xác định những điều kiện chính xác cho tính giải được của một phương trình theo căn thức.

82. Ai đã xác định được những điều kiện chính xác này?

Một nhà toán học người Pháp tên là Galois, ông qua đời trong một trận thách đấu phi lí lúc ở tuổi 21, đã đào sâu vấn đề và đã chứng minh vào năm 1831 rằng một phương trình đại số là có thể giải được theo căn thức nếu và chỉ nếu nhóm Galois của nó là có thể giải được. Phần chứng minh đó quá khó để trình bày ở đây.

83. Khi nào thì những phương pháp gần đúng được sử dụng?

Mặc dù một phương trình tổng quát có bậc cao hơn bốn là không thể giải được theo căn thức, nhưng nghiệm của một phương trình bất kì với các hệ số dạng số có thể được tìm ra đến độ chuẩn xác bất kì bởi cái gọi là những phương pháp gần đúng.

Có sẵn nhiều phương pháp và các phương pháp khác nhau thích hợp cho những phương trình khác nhau.

84. Những phương pháp này có thích hợp cho phương trình bậc ba và phương trình bậc bốn không?

Những phương pháp như thế thích hợp hơn cho việc giải các phương trình bậc ba và phương trình bậc bốn có các hệ số dạng số.

85. Một phương trình bậc ba được giải theo phương pháp đó như thế nào?

Phương pháp thông qua ở đây là thích hợp nếu phương trình đã cho có thể suy giản về dạng

x = a + Φ (x),

trong đó a là một con số nào đó, và Φf(x) là một đại lượng nhỏ phụ thuộc vào x.

Một nghiệm gần đúng được cho bởi x = a.

Đưa x = a vào vế phải của phương trình đã cho, ta thu được một gần đúng thứ hai,

x = a + Φ (a), trong đó Φ (a) là thay thế cho x trong Φ (x).

Kí hiệu giá trị này là a1, ta có một gần đúng thứ ba

x = a + Φ (a1)

và cứ thế, cho đến khi nghiệm đạt tới mức độ chuẩn xác theo yêu cầu.

86. Phương trình sau đây được giải như thế nào: x3 + 3x2 + 2 = 0?

Chia cho x2, phương trình đã cho có thể viết lại là

x = - 3 - 2/x2, có dạng x = a + Φ (x)

Một gần đúng thứ nhất là x = – 3.

Phương trình này chỉ có một nghiệm thực. Hai nghiệm kia là ảo.

87. Các nghiệm của một phương trình được định vị như thế nào?

Khi một phương trình có nhiều hơn một nghiệm thực, để xác định tất cả các nghiệm, cần định vị chúng một cách gần đúng trước khi giá trị của chúng có thể được xác định đến độ chuẩn xác cần thiết.

Xét phương trình

8x3 – 100x2 + 342x – 315 = 0

Cho x nhận các giá trị 0, 1, 2, 3, 4, 5,… và duyệt qua giá trị của biểu thức ở vế trái. Ta hãy gọi nó là P, thì

P = 8x3 – 100x2 + 342x – 315

Khi          x = 0,     P = – 315

                x = 1,     P = – 65

                x = 2,     P = 33

                x = 3,     P = 27

                x = 4,     P = – 35

                x = 5,     P = – 105

                x = 6,     P = – 135

                x = 7,     P = – 77

                x = 8,     P = 120

Từ trên ta thấy khi x tăng từ 1 lên 2, P tăng từ – 65 lên 33. Bắt đầu từ một giá trị âm – 65, trước tiên P phải thu được một giá trị bằng không, và chỉ khi đó nó mới có thể tăng đến một giá trị dương 33. Do đó, P sẽ nhận một giá trị bằng không với một giá trị nào đó của x giữa 1 và 2.

Tương tự, khi x tăng từ 3 lên 4, giá trị của P giảm từ 27 xuống – 35. Do đó, một lần nữa P sẽ nhận một giá trị bằng không với một giá trị nào đó của x giữa 3 và 4.

Tiếp theo, khi x tăng từ 4 lên 7, P vẫn giữ nguyên dấu và không nhận một giá trị bằng không nào ở giữa khoảng đó.

Cuối cùng, khi x tăng từ 7 lên 8, giá trị của P tăng từ – 77 lên 120. Do đó, một lần nữa P sẽ nhận một giá trị bằng không với một giá trị nào đó của x giữa 7 và 8.

Vì một giá trị bằng không của P ứng với một nghiệm của phương trình, nên phương trình đã cho chỉ có các nghiệm giữa 1 và 2, giữa 3 và 4, và giữa 7 và 8.

Trong trường hợp đã cho, P nhận giá trị bằng không với x = 1,5; 3,5 và 7,5; đó là nghiệm của phương trình đã cho.

Toán học – Những điều kì thú và những mốc son lịch sử
A.L. Audichya
Trần Nghiêm dịch
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Downlaod video thí nghiệm

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Công nghệ MIT biến nước thành chất rắn ở nhiệt độ sôi
05/12/2016
Ở mực nước biển, nước sẽ đóng băng ở 0oC và sôi ở 100oC. Nhưng dường như nhiệt độ không phải là yếu tố duy nhất có
Loại laser hoàn toàn mới với ánh sáng và sóng nước
05/12/2016
Có một lĩnh vực mới ra đời trong công nghệ laser. Các nhà nghiên cứu tại Viện Công nghệ Technion-Israel vừa phát triển kĩ
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 14)
02/12/2016
ROGER BACON Tin tức về những chất nổ mới lạ cuối cùng đã lan tới châu Âu vào giữa thế kỉ thứ 13, và một nhà triết học
IUPAC công nhận tên gọi chính thức cho các nguyên tố 113, 115, 117 và 118
02/12/2016
Sau 5 tháng đánh giá, các nguyên tố trước đây gọi là 113, 115, 117, và 118 nay được đặt tên chính thức là Nihonium (Nh), Moscovium
Morocco xây dựng nhà máy điện mặt trời lớn nhất châu Phi
02/12/2016
Nếu Ấn Độ sắp có nhà máy điện mặt trời lớn nhất thế giới, thì Morocco đang xây dựng một nhà máy điện mặt trời
Ấn Độ công bố nhà máy điện mặt trời lớn nhất thế giới
01/12/2016
Ấn Độ vừa cho công bố các hình ảnh của Dự án Nhà máy điện Mặt trời Kamuthi, cho phép mọi người được chiêm ngưỡng nhà
Phi thuyền Cassini sẵn sàng thực hiện cái kết kịch tính trên Thổ tinh
30/11/2016
Ngày 30 tháng 11 năm nay, sau 12 năm khiêu vũ cùng Thổ tinh, phi thuyền vũ trụ Cassini của NASA đang lao vào, chuẩn bị cho một cái
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 13)
30/11/2016
5THUỐC SÚNG VÀ ĐẠI BÁCNhững khám phá làm thay đổi nghệ thuật chiến tranh và thay đổi thế giới Trong nhiều năm trời, Thành
Vui Lòng Đợi

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com