Toán học – Những điều kì thú và những mốc son lịch sử (Phần 23)

62. Mở rộng hệ thống số thì có lợi gì? Hay định lí cơ bản của đại số học là gì?

Với hệ thống số mở rộng bao gồm toàn bộ số tự nhiên, phân số, số âm, số vô tỉ và số phức, người ta đã có thể phát biểu một định đề rất quan trọng và đẹp đẽ gọi là định lí cơ bản của đại số học.

Nó phát biểu rằng mọi phương trình đại số bậc n với các hệ số thực hoặc hệ số phức luôn luôn có ít nhất một nghiệm thực hoặc nghiệm phức.

Nó được gọi là định lí cơ bản của đại số học bởi vì khi nó được Gauss chứng minh lần đầu tiên vào năm 1799, nghiên cứu đại số học chỉ mới hạn chế với lí thuyết của các phương trình. Mặc dù định lí cực kì quan trọng nhưng tên gọi như thế không còn hợp lí trước sự thay đổi to lớn về bản chất và quy mô của đại số học.

Một hệ quả rất hữu ích của định lí này là mỗi phương trình đại số bậc n không phải có một mà có chính xác n nghiệm. Tất nhiên, ở đây ta giả sử rằng một nghiệm trùng lắp cũng được đếm là một nghiệm.

63. Tại sao định lí cơ bản của đại số học được gọi là định lí tồn tại?

Nó được gọi là định lí tồn tại vì nó chỉ đơn giản cho chúng ta biết số lượng nghiệm tồn tại đối với một phương trình cho trước, chứ nó không đề cập tới phương pháp xác định nghiệm.

64. Định lí này có đúng cho mọi loại phương trình không?

Không. Định lí chỉ đúng đối với các phương trình đại số vì có tồn tại những phương trình phi-đại số không có nghiệm gì cả!

Ví dụ, phương trình ax = 0, trong đó a là một số thực, không có nghiệm nào hết!

65. Những phương trình nào được gọi là phi-đại số?

Sau đây là một vài phương trình phi-đại số:

(i)                  x + log10x = 5

(ii)                ex – 3x = 0

(iii)               x2 + 4 sinx = 0

Những phương trình này là phi-đại số vì chúng chứa các biểu thức logarithm, lũy thừa hoặc lượng giác.

66. Hệ thống số có được khái quát hóa vượt ra ngoài số phức hay không?

Đã có những nỗ lực khái quát hóa thêm khái niệm số nhưng không thành công cho lắm.

Các quaternion và số siêu phức đã được phát minh để có sự khái quát hóa như thế.

67. Quaternion là gì?

Một quaternion là một kí hiệu thuộc loại a + bi + cj + dk, trong đó a, b, c, d là các số thực, và i, j, k là các kí hiệu toán tử.

Tổng của hai quaternion được định nghĩa đơn giản. Ví dụ, tổng của hai quaternion

x = x0 + x1i + x2j + x3k

và y = y0 + y1i + y2j + y3k

là x + y = (x0 + y0) + (x1 + y1)i + (x2 + y2)j + (x3 + y3)k.

Tích của hai quaternion được định nghĩa bằng cách sử dụng luật phân phối và những quy ước sau đây:

i2 = j2 = k2 = - 1

ij = - ji = k

jk = - kj = i

ki = - ik = j

Chúng được phát minh bởi William R. Hamilton.

68. Số siêu phức là gì?

Một số siêu phức được kí hiệu bởi biểu thức

E1x1 + E2x2 +… + Enxn,

trong đó x1, x2,…, xn là các số thực, và E1, E2,…, Elà các kí hiệu toán tử.

Nó còn được gọi là vector n chiều, và được sáng tạo bởi Grassmann, một người đương thời với Hamilton.

Lí thuyết số siêu phức bao hàm các quaternion, nên các quaternion có thể được xem là một trường hợp đặc biệt của số siêu phức.

69. Tại sao những mở rộng này của hệ thống số ít được biết tới?

Có nhiều lí do.

Các nhà vật lí và các nhà toán học ứng dụng thấy chúng quá khái quát và phức tạp cho những nhu cầu hằng ngày của họ.

Thứ hai, một công cụ toán học đơn giản hơn nhiều gọi là Giải tích Vector đã được phát triển, do sức mạnh to lớn của nó mà nó được ứng dụng rộng rãi trong hầu như mỗi ngành vật lí toán và nhiều lĩnh vực khác.

Thứ ba, các quy ước mà Hamilton sử dụng để định nghĩa tích của hai quaternion hay các quy tắc mà Grassmann lập ra để kết hợp hai số siêu phức không thỏa mãn sức mạnh của tính hợp thức của toán học.

70. Vậy câu hỏi cần trả lời là gì: Khái niệm số có được mở rộng thêm vượt ra ngoài hệ số phức hay không?

Câu trả lời là Không, và đó là một bước ngoặc lớn.

Weierstrass đã chứng minh vào khoảng năm 1860, và sau này được Hilbert chứng minh đơn giản hơn nữa, rằng không thể có sự khái quát hóa nào thêm nữa theo xu hướng đặc biệt này.

Chúng ta đã đi tới cuối con đường.

Toán học – Những điều kì thú và những mốc son lịch sử
A.L. Audichya
Trần Nghiêm dịch
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Các chuẩn cho hệ SI mới
10/08/2017
Trong khi nước Mĩ vẫn ngoan cố sử dụng các đơn vị Anh như dặm, pound và độ Fahrenheit, thì phần đông thế giới thống nhất
Sơ lược từ nguyên vật lí hạt (Phần 2)
05/07/2017
muon (mu-meson; gọi tắt) Người đặt tên: Carl Anderson và Seth Neddermeyer, 1938 Muon là thành viên của họ lepton và hành xử giống
Sơ lược từ nguyên vật lí hạt (Phần 1)
26/06/2017
Làm thế nào proton, photon và các hạt khác có được tên gọi của chúng? Theo năm tháng, các nhà vật lí đã đặt tên cho những
Lần đầu tiên làm lạnh laser các phân tử ba nguyên tử
08/05/2017
Lần đầu tiên các phân tử gồm ba nguyên tử đã được làm lạnh xuống nhiệt độ cực lạnh bằng kĩ thuật laser. Thành tựu
Bí ẩn “sương xanh”
21/04/2017
Tại sao những chất lỏng nhất định chuyển thành màu xanh khi nguội đi là một bí ẩn khiến các nhà khoa học bối rối trong hơn
[Sách] Albert Einstein - Mặt nhân bản
10/04/2017
TVVL giới thiệu bài viết của giáo sư Nguyễn Xuân Xanh về tập sách Albert Einstein - Mặt Nhân Bản vừa phát hành ở Việt Nam, do
Thế nào là một đơn vị thiên văn?
30/03/2017
Khi đương đầu với vũ trụ, con người thích diễn đạt các thứ theo những thuật ngữ quen thuộc. Khi khảo sát các ngoại hành
Nguyên tố Arsenic
26/03/2017
Số nguyên tử: 33 Trọng lượng nguyên tử: 74,92160 Màu: xám Pha: rắn Phân loại: á kim Điểm nóng chảy: không rõ Điểm thăng
Vui Lòng Đợi

Đọc nhiều trong tháng

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com