6 bài toán lớn cùng giải thưởng triệu đô đang chờ người giải

Ai cũng biết rằng nhân loại chi rất nhiều tiền cho nghiên cứu khoa học, công nghệ, kĩ thuật, và toán học, nhưng chỉ có vài ba lĩnh vực là mang đến cơ hội kiếm tiền trực tiếp như toán học.

Truyền thống trả tiền cho giải thưởng toán học đã có từ lâu. Một trong những người nổi tiếng nhất chi trả cho các định lí được chứng minh là nhà toán học huyền thoại Paul Erdős. Tuy nhiên, tấm séc 25 đô của ông mang tính chất chiến lợi phẩm hơn là giá trị tiền mặt của nó.

Truyền thống đó vẫn tiếp tục cho đến ngày nay. Tuy nhiên, bạn nên nhớ rằng những bài toán được treo giải là những bài toán cực khó đã làm tiêu hao sức lực của biết bao thế hệ nhà toán học, và giải thưởng triệu đô đòi hỏi đổ mồ hôi sôi nước mắt mới có được.

5.000 USD – Giả thiết Erdős về dãy số

Khi Erdős qua đời vào năm 1996, Ronald Graham là người chịu trách nhiệm hiện nay cho bất kì ai giải được bài toán của Erdős.

Bạn có thể giành về 5.000 USD bằng cách chứng minh một trong những bài toán còn lại của Erdős, giả thiết Erdős về dãy số:

Nếu tổng nghịch đảo của các phần tử của một tập hợp A (gồm các số nguyên dương) là phân kì, thì A có chứa những chuỗi số dài tùy ý có hiệu không đổi giữa các phần tử.

Cái bạn cần là một tập hợp A gồm các số nguyên dương. Bạn lấy nghịch đảo của những số đó – với một số x thì nghịch đảo của nó là 1/x – rồi bạn cộng chúng lại, và bạn thấy rằng chúng không bao giờ tiến về một con số nào đó, chúng cứ tiếp tục cộng đến vô cùng.

Vâng, giả thiết này phát biểu rằng nếu điều đó xảy ra, thì bạn sẽ để ý thấy A có chứa những chuỗi số với khoảng cách tùy ý giữa chúng.

Nếu bạn chứng minh được thì cứ thông báo với Graham, và tấm séc 5.000 USD sẽ được gửi đến cho bạn. Tấm séc sẽ do Graham kí nếu bạn muốn nhận tiền mặt, hoặc do Erdős kí nếu bạn chỉ muốn giữ nó làm chiến lợi phẩm.

Khoảng 65.000 USD – Giải thưởng Huttler

Giải thưởng này, do Marcus Hutter tài trợ, tìm kiếm những phương pháp mới để nén dữ liệu. Công việc là sáng tạo ra một thuật toán nén mới để thu về một file nén của một file 100 MB cho trước với dung lượng nhỏ hơn kỉ lục trước đó.

Nếu bạn có thể nén nó nhỏ hơn kỉ lục hiện nay – khoảng 16 MB – thì bạn nhận được một phần của số tiền trên. Cho đến nay, Alexander Ratushnya là người đã ba lần giành giải.

Bạn thắc mắc số tiền thưởng là bao nhiêu ư? Thuật toán nén của bạn tiến bộ hơn kỉ lục trước đó bao nhiêu phần trăm thì bạn nhận được bấy nhiêu phần trăm của số tiền trên, với tối thiểu là 3%.

1.000.000 USD – Phương trình Navier-Stokes

Đây là một trong sáu bài toán thiên niên kỉ mà nếu giải được, bạn sẽ rinh về giải thưởng là 1 triệu đô la.

Các phương trình Navier-Stokes giúp chúng ta hiểu và dự đoán chuyển động của các dòng chất lưu về mặt toán học.

Phương trình Navier-Stokes

Vấn đề là chúng ta không thật sự hiểu rõ các phương trình này. Các chất lưu thường khó hiểu nhưng lại quan trọng. Với các phương trình Navier-Stokes, ai đó phải nghĩ ra được những ý tưởng mới để chúng ta có thể đi từ những phương trình vi phân riêng phần sơ bộ đến chỗ hiểu trọn vẹn phương trình.

Chúng ta cần biết rằng có tồn tại “những nghiệm trơn, có nghĩa” cho các phương trình trên, theo lời của Chlarles L. Ferfferman. Bạn hãy mô tả chúng và giải thưởng triệu đô sẽ là của bạn.

1.000.000 USD – Giả thiết Riemann

Đây là một bài toán thiên niên kỉ khác. Khi bạn nhìn vào các số nguyên tố lẫn trong các số tự nhiên, bạn không để ý thấy khuôn mẫu gì.

Tuy nhiên, hồi thế kỉ 19, nhà toán học G.F.B. Riemann đã thấy rằng tần suất của các số nguyên tố có liên hệ mật thiết với hành trạng của hàm Zeta Riemann:

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + ...

Giả thiết Riemann là toàn bộ các nghiệm của phương trình ζ(s) = 0 đều nằm trên một đường thẳng đứng. Với 1,5 tỉ nghiệm đầu tiên, các nhà toán học đã kiểm tra và thấy rằng Riemann là đúng.

Nếu bạn chứng minh được giả thiết trên là đúng, thì cứ đi nhận tấm séc 1 triệu đô.

1.000.000 USD – Chứng minh giả thiết Beal

Định lí cuối cùng của Fermat đã không được giải trong hàng trăm năm trời. Nó phát biểu rằng không có ba số nguyên dương a, bc có thể thỏa mãn

ax + bx = cx

khi số nguyên x lớn hơn 2.

Khi nghiên cứu định lí cuối cùng của Fermat, nhà tỉ phú Andy Beal đã vướng phải một bài toán khác. Lúc ấy, ông đang sử dụng máy vi tính để khảo sát những phương trình tương tự với số mũ khác nhau.

Giả thiết Beal như sau: Nếu a, b, c, x, yx đều là số nguyên dương và x, y, x đều lớn hơn 2 thì

a+ by = cz

chỉ thỏa mãn khi a, bc có một thừa số nguyên tố chung.

Beal tìm thấy trong các tính toán trên máy của ông rằng phương trình chỉ có nghiệm khi a, bc có một thừa số nguyên tố chung, nên ông đã liên hệ với giới hàn lâm để xác nhận bài toán là mới, và cùng với Hội Toán học Mĩ thành lập một giải thưởng trao cho ai chứng minh được giả thiết của ông.

Nếu bạn chứng minh được giả thiết Beal và được Hội Toán học Mĩ thừa nhận và cho đăng tạp chí, thì bạn sẽ rinh về 1 triệu đô la.

Khoảng 2.500 USD – Đào bitcoin

Khi bạn “đào Bitcoin” là bạn sử dụng một máy vi tính để giải một bài toán mật mã toán học hết sức khó.

Bạn không thật sự đang giải toán, nhưng thực chất vấn đề là bạn đang cố gắng giải một bài toán trước bất kì người nào khác.

Nên để máy tính của bạn làm việc thay bạn – giải thành công bài toán mật mã trước bất kì người nào khác – bạn sẽ được thưởng 25 bitcoin, đó là một cách khuyến khích người ta tham gia vào thế giới tiền ảo này.

25 bitcoin hiện nay quy đổi khoảng 2.500 USD. Tuy nhiên, hiện nay, ở một số nước, đồng tiền ảo bitcoin bị cấm lưu hành.

Theo businessinsider.com

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Vật lí Lượng tử Tốc hành (Phần 52)
22/05/2019
Vụ Nổ Lớn Nguồn gốc của lí thuyết Vụ Nổ Lớn (Big Bang) nằm ở thực tế chính không gian đang dãn nở. Nếu Vũ trụ hiện
Vật lí Lượng tử Tốc hành (Phần 51)
22/05/2019
Lí thuyết nhiễu loạn Trong khi các nhà vật lí có thể tính ra nghiệm cho các toán tử Hamiltonian tương ứng với, nói ví dụ,
Tương lai nhân loại - Michio Kaku (Phần 4)
22/05/2019
SỰ TRỖI DẬY CỦA TÊN LỬA V-2 Dưới sự lãnh đạo của von Braun, các công thức trên giấy và bản phác thảo của Tsiolkovsky
Tương lai nhân loại - Michio Kaku (Phần 3)
22/05/2019
PHẦN I: RỜI TRÁI ĐẤT – LEAVING THE EARTH Bất cứ ai ngồi trên đỉnh của hệ thống nạp đầyu nhiên liệu hydro-oxygen lớn nhất
Vật lí Lượng tử Tốc hành (Phần 50)
21/05/2019
Nguyên lí tương ứng Cơ học lượng tử giải quyết vật lí học của cái rất nhỏ và, như chúng ta thấy, hành trạng lượng
Từ trường của vũ trụ vô cùng yếu
20/05/2019
Từ trường của toàn bộ vũ trụ yếu hơn 2,5 tỉ lần so với của một nam châm tủ lạnh, theo một phân tích mới. “Xét theo
Tương lai của tâm trí - Michio Kaku (Phần 4)
20/05/2019
TỪ TÍNH TRONG NÃO Trong thập kỷ qua, nhiều thiết bị công nghệ cao mới đã bước vào bộ công cụ của các nhà thần kinh học,
Tương lai của tâm trí - Michio Kaku (Phần 3)
20/05/2019
MRI: CỬA SỔ NHÌN VÀO TRONG BỘ NÃO Để hiểu lý do tại sao công nghệ mới triệt để này đã giúp giải mã bộ não đang suy

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com