Vì sao lực hấp dẫn khác với những lực kia? (Phần 2)

Nan đề lượng tử

Lực hấp dẫn gần như, chứ không luôn luôn, khớp với khuôn mẫu được thiết lập bởi ba lực cơ bản kia. Chúng ta có thể nghĩ nó là một lực giống như mọi lực khác, và chúng ta có thể nghĩ về khối lượng giống như chúng ta nghĩ về những tích khác. Nhưng lực hấp dẫn yếu hơn nhiều và chỉ vận hành theo một chiều. Sự không tương thích rõ ràng ở các lực có nghĩa là, hoặc khuôn mẫu mà chúng ta có là vô giá trị, hoặc chúng ta đang còn thiếu thứ gì đó to tát lắm.

Hóa ra lực hấp dẫn còn kì lạ ở những phương diện khác, dễ thấy hơn. Chúng ta có một cách tìm hiểu mọi hạt vật chất và ba trong bốn lực cơ bản trong một khuôn mẫu toán học gọi là cơ học lượng tử. Trong cơ học lượng tử, mọi thứ được mô tả dưới dạng hạt, kể cả ba lực cơ bản này. Khi một electron đẩy một electron khác, nó không sử dụng Lực hay một dạng siêu năng lực vô hình nào đó để làm electron kia dịch chuyển. Các nhà vật lí nghĩ về tương tác đó dưới dạng một electron ném ra một hạt vào electron kia để truyền một phần động lượng của nó. Trong trường hợp electron, những hạt mang lực này gọi là photon. Trong trường hợp lực yếu, các hạt trao đổi boson W và Z. Các hạt chịu lực mạnh thì hoán đổi gluon.45

Khuôn mẫu cơ học lượng tử này, mô hình chuẩn của vật lí hạt từ chương 4, đã thành công tột bậc ở việc mô tả phần lớn thế giới tự nhiên (với “phần lớn” chúng ta muốn nói tới 5 phần trăm ngượng ngạo của vũ trụ, nhớ chứ?). Nhìn nhận thế giới theo các hạt lượng tử có thể giải thích nhiều thứ chúng ta đã thấy trong các thí nghiệm, và nó cho phép chúng ta dự đoán những thứ chưa từng được trông thấy trước đó, ví như các hạt vật chất khác hay boson Higgs. Nó còn giải thích được vì sao lực yếu có tầm tác dụng ngắn như thế: các hạt lực của nó có khối lượng rất lớn, thành ra làm hạn chế quãng đường mà chúng có thể đi được. Thế nhưng có một trở ngại lớn với Mô hình Chuẩn: cách tiếp cận giống như vậy không thích hợp để mô tả lực hấp dẫn.

Graviton: Hạt sơ cấp hay Siêu vệ binh trong truyện tranh?

Cơ học lượng tử không mô tả được lực hấp dẫn vì hai nguyên do. Thứ nhất, việc lắp khớp lực hấp dẫn vào Mô hình Chuẩn đòi hỏi một hạt truyền lực hấp dẫn. Các nhà vật lí đặt tên sáng tạo cho hạt giả thuyết này là “graviton”. Nếu nó tồn tại, thì điều đó có nghĩa là, khi bạn đang ngồi (hay đang đứng), đang bị hút xuống bởi lực hấp dẫn, thì tất cả các hạt trong cơ thể bạn không ngừng tung hứng những quả cầu lượng tử bé xíu với tất cả những hạt khác của Trái Đất dưới chân bạn. Và vì Trái Đất quay xung quanh Mặt Trời, nên có một dòng graviton liên tục được hoán đổi giữa mọi hạt trên Trái Đất và mọi hạt trên Mặt Trời. Vấn đề là, chẳng ai từng nhìn thấy graviton, nên lí thuyết này có thể hoàn toàn sai.

Lực hấp dẫn

Lí do còn lại khiến các nhà vật lí gặp khó trong việc sáp nhập lực hấp dẫn vào cơ học lượng tử là vì chúng ta đã một lí thuyết xuất sắc về lực hấp dẫn, một lí thuyết do Einstein xây dựng vào năm 1915. Nó được gọi là thuyết tương đối rộng, và nó vận hành suôn sẻ theo kiểu riêng của nó. Nó nhìn nhận lực hấp dẫn theo một cách hoàn toàn khác: thay vì nghĩ lực hấp dẫn là một lực giữa hai vật thể, Einstein nhìn nhận lực hấp dẫn là sự biến dạng của chính không gian. Einstein nhận thấy lực hấp dẫn trở nên đơn giản hẳn nếu bạn đừng nghĩ không gian là một khái niệm trừu tượng, là phông nền vô hình cho toàn bộ vật chất, và thay vậy hãy nghĩ nó là một chất lưu động hoặc một tấm vải linh hoạt. Sự có mặt của vật chất (hay năng lượng) bẻ cong không gian xung quanh nó, làm thay đổi đường đi của các vật. Trong bức tranh của Einstein, không hề có lực hấp dẫn, chỉ có sự biến dạng của không gian thôi.

Lực hấp dẫn

Theo thuyết tương đối rộng, lí do Trái Đất quay xung quanh Mặt Trời chứ không bay vụt vào không gian không phải vì có một lực hút nó đi vào một quỹ đạo. Nó chuyển động xung quanh Mặt Trời bởi vì không gian xung quanh Mặt Trời bị biến dạng sao cho cái trông như một đường thẳng đối với Trái Đất thật ra là một đường tròn (hay elip). Trong kịch bản này, khối lượng hấp dẫn không phải là một tích mà một số hạt có và những hạt khác không có; thay vậy nó là một số đo mức độ một vật có khả năng làm biến dạng không gian xung quanh nó. Lí thuyết này có thể nghe thật lạ, song nó rất thành công ở việc mô tả lực hấp dẫn địa phương, lực hấp dẫn vũ trụ, và nhiều thứ kì lạ khác mà chúng ta thấy trong không gian. Nó giải thích vì sao ánh sáng bẻ cong xung quanh các vật thể và vì sao GPS của bạn hoạt động được, và nó dự đoán các lỗ đen.

Lực hấp dẫn

Vấn đề là thuyết tương đối rộng vận hành rất tốt, vì thế chúng ta nghĩ nó có khả năng là một mô tả đúng về tự nhiên, nhưng chúng ta không thể hợp nhất nó với lí thuyết cơ bản còn lại, cơ học lượng tử, lí thuyết cũng có vẻ là một mô tả đúng về tự nhiên.

Một phần vấn đề là vì chúng nhìn nhận thế giới quá khác biệt nhau. Cơ học lượng tử xem không gian là một phông nền phẳng, còn thuyết tương đối rộng bảo chúng ta rằng không gian là bộ phận của một thứ động đậy, linh hoạt: không-thời gian. Vậy lực hấp dẫn là sự biến dạng của không gian, hay nó là những quả cầu lượng tử bé xíu tung hứng giữa các hạt? Mọi thứ khác trong vũ trụ của chúng ta tuân theo cơ học lượng tử, thành ra sẽ hợp lí thôi nếu lực hấp dẫn tuân theo những quy tắc giống vậy, nhưng cho đến nay chẳng có bằng chứng nào thuyết phục chúng ta rằng các graviton tồn tại.

Lực hấp dẫn

Còn vướng mắc hơn nữa là chúng ta thậm chí chẳng thể dự đoán một lí thuyết hợp nhất về hấp dẫn lượng tử sẽ trông như thế nào? Thông thường các nhà vật lí có thể dự đoán các hạt sau đó được khám phá trên thực nghiệm (ví như quark top hay boson Higgs), song cho đến nay mọi lí thuyết mà chúng ta có nhằm hợp nhất cơ học lượng tử và lực hấp dẫn đều thất bại; chúng liên tục đưa đến những kết quả phi lí, kiểu như “vô hạn”. Các nhà vật lí là một nhóm tụ tập thông minh (trên lí thuyết), và họ có một số ý tưởng hay có lẽ một ngày nào đó sẽ đưa đến một lí thuyết hợp nhất – ví dụ lí thuyết dây hay lực hấp dẫn vòng lượng tử – thế nhưng nói cho công bằng thì cho đến nay tiến bộ là chậm. Xem chương 16 bàn luận chi tiết hơn về các lí thuyết thống nhất mọi kiến thức.

<< Phần 1 | Phần 3 >>

Trích từ We Have No Idea (Jorge Cham & Daniel Whiteson)

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 90)
25/05/2020
Đồng hồ tròn năm 1841 Những đồng hồ đầu tiên không có kim phút. Kim phút chỉ trở nên quan trọng cùng với sự phát triển
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 89)
25/05/2020
Định luật Joule về sự tỏa nhiệt do dòng điện 1840 James Prescott Joule (1818-1889)   Các bác sĩ phẫu thuật thường ăn
Câu chuyện phát minh laser: Và thế là có ánh sáng!
22/05/2020
Kỉ niệm 60 năm laser ra đời. Bài của Pauline Rigby trên tạp chí Physics World, số tháng 5/2020. Cuộc đua chế tạo laser đã khởi
Tìm hiểu nhanh về Vật chất (Phần 9-Hết)
21/05/2020
Chương 9 Vật chất tối và năng lượng tối Khi chúng ta nhìn vào không gian sâu thẳm với kính thiên văn của mình, chúng ta nhìn
Bảng tuần hoàn hóa học tốc hành (Phần 100-Hết)
19/05/2020
Oganesson Việc tạo ra các nguyên tố siêu nặng mới là một bài tập thực hành trong việc theo đuổi bóng ma nguyên tử. Những
Bảng tuần hoàn hóa học tốc hành (Phần 99)
19/05/2020
Moscovium Món chén Thánh của nghiên cứu nguyên tố siêu nặng là định vị cái gọi là các hòn đảo ổn định. Đây là những
Galileo và bản chất của khoa học vật lí
13/05/2020
3.1 Giới thiệu Có ba câu chuyện được kể lại. Chuyện thứ nhất kể Galileo là một nhà triết học tự nhiên. Không giống
Tương lai của tâm trí - Michio Kaku (Phần 50)
12/05/2020
15. NHỮNG CHỈ TRÍCH ĐANG QUY KẾT Năm 2000, một cuộc tranh cãi dữ dội nổ ra trong cộng đồng khoa học. Một trong những người

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com