Ánh sáng bị phản xạ và khúc xạ như thế nào?

Chúng tôi trích giới thiệu với các bạn một số bản dịch từ tác phẩm Những câu hỏi và bài tập vật lí phổ thông của hai tác giả người Nga L. Tarasov và A. Tarasova, sách xuất bản ở Nga năm 1968. Bản dịch lại từ bản tiếng Anh xuất bản năm 1973.

Các bài giảng được trình bày dưới dạng thảo luận hỏi đáp giữa giáo viên (GV) và học sinh (HS).

§31. Ánh sáng bị phản xạ và khúc xạ như thế nào?

GV: Hãy phát biểu định luật phản xạ và khúc xạ ánh sáng.

HS A: Định luật phản xạ là: góc tới bằng góc phản xạ. Định luật khúc xạ là: tỉ số của sin của góc tới và sin của góc khúc xạ bằng chiết suất của môi trường.

GV: Phát biểu của em chưa chính xác lắm. Trước tiên, em chưa nói tới thực tế là tia tới và tia phản xạ (hoặc khúc xạ) nằm trong cùng một mặt phẳng với pháp tuyến với đường ranh giới phản xạ (hoặc khúc xạ) dựng tại điểm tới. Nếu không nêu rõ điều này, thì chúng ta có thể giả sử sự phản xạ xảy ra như minh họa ở Hình 128. Thứ hai, phát biểu của em về định luật khúc xạ chỉ nêu trường hợp đặc biệt tia sáng tới từ không khí trên ranh giới của một môi trường nhất định. Giả sử trong trường hợp tổng quát, tia sáng đi từ một môi trường có chiết suất n1 đến ranh giới của một môi trường có chiết suất n2. Chúng ta gọi góc tới là α1 và góc khúc xạ là α2. Trong trường hợp này, định luật khúc xạ có thể được viết dưới dạng

Công thức này đưa tới phát biểu của em, với không khí n1 = 1.

Xét bài toán sau đây. Một đồng tiền nằm trong nước ở độ sâu H. Chúng ta nhìn vào nó từ phía trên theo phương thẳng đứng. Hỏi chúng ta thấy đồng tiền ở độ sâu bao nhiêu?

HS A: Theo em biết thì ta sẽ thấy đồng tiền được nâng lên một chút. Em không nghĩ mình có thể đưa ra câu trả lời rõ ràng hơn.

GV: Chúng ta hãy vẽ hai tia sáng từ tâm của đồng tiền: OAOB1B (Hình 129). Tia OA không bị khúc xạ (vì nó thẳng đứng) và tia OB1B thì bị khúc xạ. Giả sử hai tia phân kì này đi vào mắt. Mắt sẽ nhìn thấy một ảnh của đồng tiền tại giao điểm của hai tia phân kì OAB1B, tức là tại điểm O1. Rõ ràng từ sơ đồ là khoảng cách cần tìm h liên hệ với độ sâu H như sau:

(trong đó góc biểu diễn theo radian, chứ không theo độ). Sử dụng công thức (191), ta có thể viết lại phương trình (190) ở dạng

Vì với nước n = 4/3, nên h = (3/4)H.

HS B: Nếu chúng ta nhìn vào đồng tiền, không nhìn thẳng đứng, mà nhìn xiên góc, thì chúng ta sẽ thấy gì?

GV: Trong trường hợp này, ta thấy đồng tiền không những được nâng lên, mà còn dịch ra xa (xem đường đứt nét trên Hình 129). Rõ ràng, các tính toán trong trường hợp này sẽ phức tạp hơn nhiều. Xét bài toán sau đây. Một người thợ lặn có chiều cao h đứng trên đáy của một cái hồ có độ sâu H. Tính khoảng cách tối thiểu từ chỗ người thợ lặn đứng đến những điểm thuộc đáy hồ mà anh ta có thể nhìn thấy phản xạ từ mặt nước.

HS A: Em biết cách giải những bài toán như vậy. Ta hãy gọi khoảng cách cần tìm là L. Đường đi của tia sáng từ điểm A đến mắt của người thợ lặn được vẽ trên Hình 130. Điểm A là điểm gần người thợ lặn nhất mà anh ta có thể nhìn thấy phản xạ từ mặt hồ. Do đó, chẳng hạn, một tia sáng từ điểm B ở gần hơn bị khúc xạ tại bề mặt và không quay lại phía người thợ lặn (xem đường đứt nét ở Hình 130). Góc α là góc tới hạn cho sự phản xạ toàn phần. Nó được tính từ công thức

GV: Hoàn toàn chính xác. Vậy người thợ lặn sẽ nhìn thấy loại ảnh gì ngay phía trên đầu?

HS A: Ngay trên đầu, anh ta sẽ thấy một vòng tròn sáng với bán kính

(xem hình 130). Bên ngoài giới hạn của vòng tròn này, anh ta sẽ thấy ảnh của các vật nằm trên đáy hồ.

HS B: Hiện tượng sẽ như thế nào nếu một phần đáy hồ nơi người thợ lặn đang đứng không bằng ngang, mà bị nghiêng?

GV: Trong trường hợp này, khoảng cách L rõ ràng sẽ phụ thuộc vào hướng mà người thợ lặn đang nhìn. Các em có thể dễ dàng thấy rằng khoảng cách này sẽ là tối thiểu khi người thợ lặn nhìn lên theo đáy nghiêng đó, và là tối đa khi người ấy nhìn theo hướng ngược lại. Kết quả thu được ở bài toán trước bây giờ chỉ có thể áp dụng khi người thợ lặn nhìn theo hướng mà độ sâu của hồ nước không thay đổi (song song với mặt hồ). Một bài toán với đáy hồ nghiêng sẽ được cho trong phần bài tập về nhà (xem Bài 74).

HS A: Liệu chúng ta có thể làm đổi hướng của chùm sáng bằng cách đưa một hệ gồm những bản mặt song song trong suốt vào đường đi của nó hay không?

GV: Em nghĩ như thế nào?

HS A: Trên nguyên tắc, em nghĩ là chúng ta có thể. Chúng ta biết rằng chùm sáng, khi bị khúc xạ, truyền đi theo một hướng khác bên trong một bản mặt song song.

HS B: Em không đồng ý. Sau khi ló khỏi bản mặt song song, chùm sáng sẽ vẫn song song với phương ban đầu của nó.

GV: Em hãy chứng minh cho kết luận này, sử dụng một hệ gồm vài bản mặt song song có chiết suất khác nhau.

HS B: Em sẽ dùng ba bản mặt song song có chiết suất lần lượt là n1, n2n3. Đường đi của tia sáng qua hệ được vẽ trên Hình 131. Đối với sự khúc xạ tia sáng tại mỗi ranh giới, ta có thể viết

Nhân tương ứng các vế trái với vế trái, và vế phải với vế phải của những phương trình này, ta được (sinα0/sinα4) = 1. Suy ra, α0 = α4, đó là cái chúng ta muốn chứng minh.

GV: Hoàn toàn chính xác. Bây giờ chúng ta hãy thảo luận về các giới hạn của khả năng áp dụng các định luật quang hình học.

HS B: Những định luật này không thể áp dụng cho những khoảng cách vào cỡ bước sóng của ánh sáng hoặc ngắn hơn. Ở những khoảng cách nhỏ hơn, tính chất sóng của ánh sáng bắt đầu xuất hiện.

GV: Em nói đúng. Đây là cái mà các thí sinh thường hiểu không đủ tốt. Em có thể nói cho tôi biết bất kì hạn chế nào về khả năng áp dụng của các định luật quang hình học từ một phương diện khác – từ phương diện khoảng cách lớn – hay không?

HS B: Nếu khoảng cách dài hơn bước sóng ánh sáng, thì ánh sáng có thể được xem xét trong khuôn khổ của quang hình học. Ít nhất đó là cái chúng ta đã nói trước đây. Em nghĩ không có ràng buộc nào đối với việc sử dụng quang hình học trên những khoảng cách lớn.

GV: Em nhầm rồi. Hãy tưởng tượng hình ảnh sau đây: em gửi một chùm ánh sáng ra ngoài không gian, hoàn toàn bỏ qua khả năng tán xạ của nó. Giả sử trong một giây, em quay thiết bị phát ra chùm sáng một góc 60o. Câu hỏi đặt ra là: trong chuyển động quay này, vận tốc của các điểm thuộc chùm sáng ở cách thiết bị hơn 300.000 km sẽ là bao nhiêu?

HS B: Em hiểu câu hỏi của thầy. Những điểm như thế phải chuyển động với vận tốc lớn hơn tốc độ ánh sáng. Tuy nhiên, theo thuyết tương đối, những vận tốc lớn hơn tốc độ ánh sáng là không thể nếu chúng là vận tốc của các đối tượng vật chất. Ở đây chúng ta đang xét một chùm sáng.

GV: Vậy một chùm sáng thì không phải là vật chất sao? Như em có thể thấy, quang hình học không tương thích với những khoảng cách hết sức lớn. Ở đây, chúng ta phải xét rằng một chùm sáng là một dòng gồm những hạt ánh sáng gọi là photon. Các photon phát ra từ thiết bị trước khi chúng ta quay nó “chẳng biết tí gì” về chuyển động quay sau đó và tiếp tục chuyển động của chúng theo hướng chúng đã được phát đi. Các photon mới được phát ra theo hướng mới. Như vậy, chúng ta không thấy bất kì sự quay nào của của tổng thể chùm ánh sáng.

HS B: Làm thế nào chúng ta có thể đánh giá định lượng giới hạn của khả năng áp dụng các định luật quang hình học từ phương diện những khoảng cách lớn?

GV: Những khoảng cách đó phải sao cho thời gian cần thiết để ánh sáng đi hết chúng phải nhỏ hơn nhiều so với bất kì thời gian đặc trưng nào trong bài toán đã cho (ví dụ, nhỏ hơn nhiều so với thời gian cần thiết để quay thiết bị phát ra chùm sáng). Trong trường hợp này, tổng thể chùm sáng không bị phá hỏng, nên chúng ta có thể an toàn sử dụng các định luật quang hình học.

Bài tập

73. Chúng ta đang nhìn thẳng đứng từ phía trên xuống một vật đặt dưới nước với một bản mặt song song bằng thủy tinh nằm phía trên nó. Bản mặt song song dày 5 cm; có một lớp nước 10 cm phía trên nó. Chiết suất của thủy tinh là 1,6. Chúng ta thấy ảnh của vật ở cách mặt nước bao xa?

74. Một người thợ lặn cao 1,8 m đứng trên đáy của một hồ nước, tại một chỗ sâu 5 m. Đáy hồ là một mặt phẳng nghiêng góc 15o. Tính khoảng cách tối thiểu theo phương đáy hồ từ chỗ người thợ lặn đứng đến điểm trên đáy hồ mà anh ta nhìn thấy phản xạ từ mặt nước.

75. Chúng ta có một bản mặt song song thủy tinh dày 5 cm với chiết suất bằng 1,5. Góc tới (từ không khí) sẽ bằng bao nhiêu để cho tia phản xạ và tia khúc xạ bởi bản mặt vuông góc với nhau? Với góc tới này, hãy tính độ dời của tia sáng do nó đi qua bản mặt song song.

76. Chúng ta có một bản mặt song song thủy tinh bề dày d và chiết suất n. Góc tới của tia sáng từ không khí lên bản mặt bằng góc phản xạ toàn phần đối với thủy tinh làm bản mặt. Tính độ dời của tia sáng do nó đi qua bản mặt song song.

Những câu hỏi và bài tập vật lí phổ thông
L. Tarasov và A. Tarasova
Trần Nghiêm dịch
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Tạo bảng điểm online

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Màu nào xuất hiện đầu tiên trong vũ trụ?
24/10/2019
Vũ trụ đắm chìm trong một biển ánh sáng, từ ánh bập bùng màu trắng-xanh của các sao trẻ đến ánh le lói màu đỏ đậm của
Kỉ lục mới về gia tốc electron: Từ zero lên 7,8 GeV trên 8 inch
23/10/2019
Để tìm hiểu bản chất của vũ trụ, các nhà khoa học phải chế tạo các máy va chạm hạt làm gia tốc electron và hạt phản
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 56)
22/10/2019
Định luật Bode về khoảng cách hành tinh 1766 Johann Elert Bode (1747–1826), Johann Daniel Titius (1729–1796) Định luật Bode, còn gọi
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 55)
22/10/2019
Hiệu ứng giọt đen 1761 Torbern Olof Bergman (1735-1784), James Cook (1728-1779) Albert Einstein từng nói rằng điều khó hiểu nhất ở
Tương lai nhân loại - Michio Kaku (Phần 28)
22/10/2019
HAI CÁCH ĐỂ SỐ HOÁ TÂM TRÍ Thực ra có hai phương án tiếp cận riêng biệt để số hóa bộ não con người. Đầu tiên là Dự
Tương lai nhân loại - Michio Kaku (Phần 27)
22/10/2019
MỘT QUAN ĐIỂM KHÁC VỀ SỰ BẤT TỬ Adaline có thể hối hận về món quà bất tử, và có lẽ cô ấy không đơn độc, nhưng
Thời gian là gì? (Phần 2)
21/10/2019
Vậy thì hãy nói đi: Thời gian là gì? Hãy nói một chút về lũ chồn sương. Để nắm rõ hơn cách các nhà vật lí nghĩ về
Vật lí Lượng tử Tốc hành (Phần 86)
16/10/2019
Chất siêu chảy Khi những chất lỏng nhất định, ví dụ helium lỏng, khi được làm lạnh xuống chỉ bằng vài độ trên không

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com