Những con số làm nên vũ trụ - Phần 76

Kích cỡ của vũ trụ nhìn thấy

Trong Chương 9, chúng ta đã xây dựng một mô hình thang đo vũ trụ sử dụng một quả bưởi chùm mới mua (và giờ đã ăn rồi) để biểu diễn Mặt trời. Trên thang đo đó, một năm ánh sáng là khoảng 660 dặm. Thiên hà Ngân hà trông giông giống như hình ảnh nước văng tung tóe bởi một cái bình tưới cây đang quay tròn; nó có tâm tại chính giữa và một vài cánh tay vắt cong ra từ chính giữa. Hệ Mặt trời nằm ở đầu cuối của một trong những cánh tay đó, và thiên hà Ngân hà có đường kính chừng 100.000 năm ánh sáng. Sử dụng mô hình của chúng ta, khoảng cách từ Mặt trời vắt qua toàn bộ Ngân hà sẽ vào cỡ 60 triệu dặm. Nếu Mặt trời, Thủy tinh và Trái đất nằm theo một đường thẳng với Thủy tinh nằm giữa Mặt trời và Trái đất, thì khoảng cách giữa Trái đất và Thủy tinh xấp xỉ 60 triệu dặm.

Thiên hà Ngân hà là một bộ phận của một tập hợp thiên hà liên kết hấp dẫn gọi là Nhóm Địa phương. Nhóm Địa phương có đường kính xấp xỉ 10 triệu năm ánh sáng, và khối tâm của nó nằm đâu đó giữa Ngân hà và thiên hà khổng lồ Andromeda (tên chính thức là M31, hay Messier 31, OFO thứ 31 trong danh sách của Messier), thiên hà này nằm cách Ngân hà khoảng 2.500.000 năm ánh sáng. Do đó, chúng ta có thể ước tính khoảng cách từ Ngân hà đến rìa của Nhóm Địa phương là khoảng 4.000.000 năm ánh sáng.Trong mô hình của chúng ta, khoảng cách đó sẽ là 2.600.000.000 dặm. Nếu Mặt trời, Trái đất và Hải Vương tinh nằm thẳng hàng với Mặt trời nằm giữa Trái đất và Hải Vương tinh, và nếu Hải Vương tinh nằm ở vị trí cận nhật của nó, thì khoảng cách giữa Trái đất và Hải Vương tinh sẽ vừa đủ để biểu diễn khoảng cách từ Ngân hà đến rìa của Nhóm Địa phương.

Bản thân Nhóm Địa phương là một bộ phận của một tập hợp đám thiên hà liên kết hấp dẫn gọi là Siêu đám Virgo. Siêu đám Virgo chứa nhiều hơn một trăm đám thiên hà và Nhóm Địa phương nằm cách thành viên xa nhất thuộc Siêu đám Virgo một khoảng chừng 60 triệu năm ánh sáng. Như thế mô hình của chúng ta sẽ đặt đám thiên hà xa nhất trong Siêu đám Virgo ở cách Trái đất 40.000.000.000 dặm. Ánh sáng sẽ mất khoảng 2,5 ngày để đi hết khoảng cách đó.

Siêu đám Virgo là một trong hàng triệu siêu đám thiên hà phân bố khắp vũ trụ nhìn thấy. Những chiếc kính thiên văn lớn nhất của chúng ta cho phép chúng ta nhìn xa đến gần 14 tỉ năm ánh sáng, gần đến thời điểm Big Bang. Sử dụng mô hình của chúng ta, khoảng cách này sẽ vào khoảng 1,5 năm ánh sáng tính từ Trái đất. Vào đầu thập niên 1990, lãnh thổ của Hệ Mặt trời đã được mở rộng để bao gồm cả Đám mây Oort, một tập hợp khổng lồ gồm những vật thể băng giá ở cách Trái đất khoảng một năm ánh sáng. Những vật thể này vẫn liên kết hấp dẫn với Mặt trời, nhưng mô hình của chúng ta tiến xa hơn Đám mây Oort 50% - xấp xỉ khoảng cách đến ngôi sao gần nhất.

Vạch mức 14 tỉ năm ánh sáng biểu diễn “đầu cuối” của vũ trụ nhìn thấy. Bên ngoài điểm này, nếu định luật Hubble vẫn được nghiệm đúng, thì các vận tốc lùi ra xa vượt quá tốc độ ánh sáng, và vì thế không có cách nào để cho thông tin truyền đến từ bất kì cái gì nằm bên ngoài giới hạn này. Có lẽ có cả một địa ngục tiệc tùng gì đó đang diễn ra, nhưng chúng ta sẽ không bao giờ nhận được thiệp mời.

Bản thân vũ trụ đang giãn nở, mang theo những thiên hà xa xôi giống như sóng đại dương mang theo những vật nổi lênh đênh, và vì thế chẳng có mâu thuẫn nào để có những vận tốc lùi ra xa lớn hơn tốc độ ánh sáng. Vận tốc lùi ra xa không phải là vận tốc thật sự, bởi vì sự lệch đỏ của các thiên hà không phải chỉ do hiệu ứng Doppler, mà còn bởi vì bản thân không gian đang giãn nở, và càng ở xa chúng ta thì nó giãn nở càng nhanh. Dù với tốc độ nào, tôi chỉ hi vọng mình sống đủ lâu để chứng kiến cái ngày các nhà khoa học xác định được có cái gì nằm ngoài giới hạn ràng buộc bởi định luật Hubble hay không, hay cái chúng ta có thể nhìn thấy thật sự là có hay không.

Những con số làm nên vũ trụ
James D. Stein
<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Downlaod video thí nghiệm

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Sơ lược từ nguyên vật lí hạt (Phần 6)
17/10/2017
hadron (hadros + on) Người đặt tên: Lev Okun, 1962 Thuật ngữ “hadron” được đặt ra tại Hội nghị Quốc tế về Vật lí Năng
Sơ lược từ nguyên vật lí hạt (Phần 5)
17/10/2017
boson W (weak + boson) Người đặt tên: Lý Chính Đạo và Dương Chấn Ninh, 1960 Là hạt mang lực yếu có mặt trong các tương tác
Chúng ta đã tìm thấy một nửa vũ trụ
15/10/2017
Một nửa lượng vật chất bình thường trong vũ trụ trước đây vắng mặt trong các quan sát mà không ai lí giải được, nay
Giải Nobel Vật Lý 2017 được trao cho việc dò tìm sóng hấp dẫn
09/10/2017
Rainner Weiss, Barry Barish và Kip Thorne chia nhau giải thưởng cho đóng góp của họ ở LIGO. DIVIDE CASTELVECCHI - Nature Ba nhà vật
Làm thế nào tạo ra á kim không chứa kim loại?
22/09/2017
Một loại vật liệu mới gọi là “á kim thung lũng spin” vừa được các nhà vật lí ở Nga, Nhật Bản và Mĩ dự đoán dựa
Thiên văn học là gì?
20/09/2017
Loài người từ lâu đã hướng mắt lên bầu trời, tìm cách thiết đặt ý nghĩa và trật tự cho vũ trụ xung quanh mình. Mặc dù
Một số thông tin thú vị về Mặt trăng
16/09/2017
Mặt trăng là vật thể dễ tìm thấy nhất trên bầu trời đêm – khi nó hiện diện ở đó. Vệ tinh thiên nhiên duy nhất của
Sơ lược từ nguyên vật lí hạt (Phần 4)
27/08/2017
boson (Bose + on) Người đặt tên: Paul Dirac, 1945 Boson được đặt theo tên nhà vật lí Satyendra Nath Bose. Cùng với Albert Einstein,
Vui Lòng Đợi

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com