Những con số làm nên vũ trụ - Phần 7

Chương 2

Tốc độ ánh sáng

Niềm đam mê toán học và khoa học đã khiến tôi đi tìm toán học và khoa học ở những nơi ít ai ngờ đến – nhất là trong lời của một số bài hát yêu thích của tôi. Khi Jim Morrison của nhóm Doors viết, “Con tàu pha lê ấy đã chật ních, một nghìn cô gái, một nghìn câu chuyện, một triệu cách để anh tiêu khiển”, phản ứng đầu tiên của tôi (ngoài việc vui vẻ lắng nghe bài hát đó) là câu hỏi tự phát trong đầu không biết Morrison quen thuộc như thế nào với những kết hợp cơ bản, về cơ bản là khoa học đếm. Vì anh ta viết đúng: nếu bạn tham gia từng câu chuyện trong một nghìn câu chuyện với từng người trong một nghìn cô gái, thì ngoài việc hoàn toàn kiệt lực, bạn sẽ thật sự tìm thấy có một triệu cách để tiêu khiển.

Một vài năm sau đó, Bob Seger viết (trong “Đêm trôi”), “Đêm qua anh giật mình thức giấc trước âm thanh của tiếng sấm. Ở ba xa nhỉ? Anh ngồi dậy và tự hỏi”. Tôi biết anh ta là người Detroit, nhưng không biết anh ta có từng tham gia lớp học khoa học nào không? Bạn không phải ngồi dậy và tự hỏi tiếng sấm ở bao xa, bạn chỉ cần đếm 1001, 1002… từ thời khắc bạn nhìn thấy tia chớp cho đến khi bạn nghe âm thanh của tiếng sấm. Thẳng thắn mà nói với Seger, như biên tập viên Sarah Van Bonn trình bày, anh ta không thể nhìn thấy tia chớp nếu anh ta thật sự bị giấc thức vì tiếng sấm. Tuy nhiên, việc đếm theo kiểu như vậy rất gần với đếm một số trong mỗi giây, và tốc độ của âm thanh thì xấp xỉ khoảng một dặm trong mỗi 5 giây, cho nên nếu bạn đếm tới 1005 khi bạn nghe tiếng sấm thì bạn biết rằng tia sét đã nổ cách xa một dặm đường. (Trong lớp học khoa học, chúng ta cũng đã học nên phải làm gì nếu như tia chớp và tiếng sấm rất gần nhau – lao xuống đất và cuộn người lại như một trái bóng. Có lẽ nếu đang sống ở ngoại ô bạn sẽ lo lắng về điều này nhiều hơn so với ở trung tâm thành phố.)

Galileo cũng biết cái giống như vậy. Tôi không chắc lắm khi nào thì người ta bắt đầu nhận thức rằng âm thanh truyền đi ở một tốc độ có thể đo khá dễ dàng, nhưng vào thế kỉ thứ 17, nhờ sự phát triển của đại bác mà sự trễ giữa sự nhìn thấy và âm thanh của vụ nổ đã được biết rõ. Trong quyển Đối thoại về hai nền khoa học của ông, Galileo đề xuất sử dụng một sự tương tự đơn giản của hiện tượng này để đo tốc độ của ánh sáng. Hai người đứng đối mặt nhau, mỗi người cầm một ngọn đèn. Cả hai người họ sẽ đậy đèn lại bằng tay; sau đó người thứ nhất mở nắp đèn, và khi người thứ hai nhìn thấy ánh sáng này anh ta sẽ mở nắp đèn của mình. Galileo nhận ra rằng thí nghiệm này sẽ không khả thi ở những khoảng cách ngắn, nhưng với sự hỗ trợ của kính thiên văn mới được phát minh ra chẳng bao lâu, thí nghiệm này có thể thực hiện trên những khoảng cách lớn. Thật không may cho Galileo, người đã thật sự cố gắng thực hiện thí nghiệm này, những khoảng cách đã xét đều hoàn toàn không tương xứng để cho phép phương pháp này hoạt động. Ánh sáng chuyển động quá nhanh nên nó truyền qua khoảng cách lớn nhất mà Galileo từng thực hiện thí nghiệm trong vòng chưa tới mười phần nghìn của một giây – một khoảng thời gian không thể đo trong thời đại của Galileo. Kết quả là Galileo đã kết luận rằng tốc độ ánh sáng hoặc là vô hạn, hoặc là cực kì nhanh.

Tuy nhiên, ý tưởng của Galileo là đúng hướng – tìm một khoảng cách mà trên đó ánh sáng mất một khoảng thời gian truyền có thể đo được, ghi lại thời gian, đo khoảng cách, và sử dụng thực tế là khi một cái gì đó chuyển động ở một tốc độ không đổi thì vận tốc chuyển động của nó bằng quãng đường đã đi chia cho thời gian đi quãng đường đó. Mặc dù bản thân ông không thể thực hiện phép tính này, nhưng Galileo đã thực hiện một trong những quan sát quan trọng nhất trong lịch sử khoa học, nó không chỉ làm cách mạng hóa cái nhìn của con người về vũ trụ, mà lần đầu tiên còn giúp có thể xác định tốc độ ánh sáng.

Những con số làm nên vũ trụ

Những con số làm nên vũ trụ
James D. Stein
Bản dịch của TVVL

<< Phần trước | Phần tiếp theo >>

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Tuyển sinh Aptech

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Quả cầu nào có nhiệt độ thấp hơn?
31/10/2014
Cho hai quả cầu thép cùng kích cỡ. Một quả cầu nằm yên trên mặt phẳng ngang, còn quả cầu kia treo bên dưới một sợi dây
Mạch vô hạn điện trở
30/10/2014
Hình 1.3 bên dưới biểu diễn một mạng lưới vô hạn các điện trở với mỗi điện trở có trị số bằng r Ω. Xác định
Một bài toán va chạm kết hợp ném ngang
27/10/2014
ĐỀ BÀI Một quả cầu khối lượng M = 0,2 kg nằm yên trên một trụ thẳng đứng chiều cao h = 5 m. Một viên đạn khối lượng m
Bạn có thể nhìn thấy hơi nước không?
22/10/2014
Hầu như mọi người đều “biết” rằng hơi nước là có thể nhìn thấy được. Nói chung, người ta có thể nhìn thấy đám
Hành trình tìm kiếm hằng số hấp dẫn G – Phần 5
20/10/2014
Các thí nghiệm khác ngoài cân xoắn Kể từ thập niên 1990, một vài nhóm đã phát triển các thí nghiệm thành công khác ngoài cân
Diode phát quang và giải Nobel Vật lí 2014 – Phần 3
13/10/2014
Cấu trúc dị thể kép và giếng lượng tử Sự phát triển của LED hồng ngoại và diode laser chứng tỏ rằng các lớp tiếp xúc
Diode phát quang và giải Nobel Vật lí 2014 – Phần 2
10/10/2014
Nghiên cứu ban đầu về LED lam Con đường đưa đến sự phát xạ ánh sáng lam tỏ ra khó khăn hơn nhiều. Những nỗ lực ban đầu
Diode phát quang và giải Nobel Vật lí 2014 – Phần 1
08/10/2014
Diode phát quang (LED) là những nguồn sáng dải hẹp hoạt động dựa trên các bộ phận bán dẫn, với bước sóng biến thiên từ

Liên kết hữu ích

Diễn Đàn Vật Lý | Phương pháp dạy & học | Tin Tức Vật Lý | Giáo án điện tử  | Văn phòng phẩm giá rẻ 

Vui Lòng Đợi

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com