Tương lai của khoa học hậu laser (2)

Vật lí nguyên tử

alt

William D Phillips

William D Philips là một nhà vật lí tại Viện Tiêu chuẩn và Công nghệ quốc gia Hoa Kì (NIST) ở Gaithersburg, Maryland, Mĩ. Ông đạt giải thưởng Nobel vật lí năm 1997 cùng với Claude Cohen-Tannoudji và Steven Chu cho kĩ thuật làm lạnh và bẫy nguyên tử bằng ánh sáng laser.

Vào đầu những năm 1970, tôi là một nghiên cứu sinh trẻ trong nhóm nghiên cứu của Dan Kleppner tại Viện Công nghệ Massachusetts, thực hiện một luận án liên quan đến việc tiến hành các phép đo chính xác với một maser hydrogen từ trường cao (maser là tiền thân dạng vi sóng của laser, cái ban đầu được gọi là “maser quang học”). Kleppner và Norman Ramsey đã phát minh ra một phiên bản trường thấp của maser hydrogen trước đó hơn một thập kỉ, và phiên bản trường cao đang tạo ra những phép đo chính xác không có tiền lệ của các mômen từ trong nguyên tử - một loại đỉnh cao thuộc loại này của ngành vật lí nguyên tử.

Nhưng rồi xuất hiện một phát triển mới sẽ làm thay đổi xu hướng nghiên cứu trong phòng thí nghiệm của Dan, trong sự nghiệp của tôi và trong tổng thể ngành vật lí nguyên tử: laser thương mại, sóng liên tục, màu tùy chỉnh đầu tiên. Môi trường phát laser trong những dụng cụ này là một chất nhuộm hữu cơ phát ra trên một ngưỡng rộng bước sóng hơn, thí dụ, một laser helium-neon, trong đó môi trường khuếch đại là một chất khí nguyên tử. Sự xuất hiện của những dụng cụ này có nghĩa là ngay cả những người không phải chuyên gia trong lĩnh vực thiết kế và chế tạo laser cũng có thể, bằng cách điều khiển một laser đến một chuyển tiếp cộng hưởng nguyên tử, khảo sát một lĩnh vực mới của việc thao tác trên nguyên tử nơi ánh sáng kết hợp là công cụ chủ chốt.

Hăm hở trước những món đồ chơi mới này, tôi nhờ Dan đề xuất một thí nghiệm nữa cho luận án sử dụng laser. Ông đồng ý, và đề nghị tôi nghiên cứu các va chạm của các nguyên tử sodium [natri] bị kích thích quang học. Tôi bắt đầu chế tạo thiết bị. Các sinh viên và nghiên cứu sinh hậu tiến sĩ khác trong nhóm đồng thời bắt đầu những thí nghiệm mới. Mỗi số mới ra của các tạp chí nghiên cứu mang đến số bài báo liên quan đến laser ngày một nhiều, và mỗi hội nghị lại chứng kiến những bản báo cáo về những thí nghiệm laser mới.

Sự nhộn nhịp lúc đó có thể sờ mò được. Những ý tưởng mới và những thí nghiệm mới xuất hiện ở mọi nơi. Năm 1978, tôi được truyền cảm ứng bởi chứng minh của Dave Wineland về việc dùng laser làm lạnh các ion tại Cục Tiêu chuẩn quốc gia (nay là NIST) ở Boulder, Colorado, và bởi một ý tưởng đến từ Art Ashkin tại Phòng thí nghiệm Bell trước việc làm chậm và bẫy một chùm nguyên tử sodium. Năm sau đó, khi tôi chuyển đến các phòng thí nghiệm của Cục ở Gaithersburg, Maryland, tôi mang theo thiết bị làm luận án của mình và bắt đầu nghiên cứu về sự làm lạnh và bẫy sodium bằng laser.

Đối với tôi, sự nhộn nhịp mà tôi cảm nhận trong những năm 1970 ở phòng thí nghiệm của Dan chưa bao giờ vơi đi. Những loại laser mới với bước sóng khác nhau, độ dài xung ngày càng ngắn đi, công suất ngày một cao hơn, bề rộng phổ ngày một hẹp hơn và tính ổn định ngày một tốt hơn làm cho những loại thí nghiệm mới đã có thể thực hiện được. Sự làm lạnh bằng laser của nhiều loại nguyên tử và ion, cộng với những chiếc đồng hồ nguyên tử, phân tử lạnh khổng lồ gõ nhịp ở tần số quang học, và các trạng thái phi cổ điển của ánh sáng chỉ là một số lộ trình trong đó các laser đã dẫn hướng cho ngành vật lí nguyên tử, phân tử và quang học (AMO).

Ngoài ra, các laser còn cho phép các nhà vật lí AMO hiện thực hóa ngưng tụ Bose-Einstein, để tạo ra những mạng quang và để nghiên cứu các chất khí Fermi cực lạnh. Mỗi một nghiên cứu trong số này đã khắc sâu thêm các quan hệ giữa AMO và ngành vật lí vật chất ngưng tụ. Có thể các laser và các nguyên tử lạnh sẽ giúp làm sáng tỏ một số vấn đề nổi cộm trong ngành vật chất ngưng tụ, thí dụ như nguồn gốc của sự siêu dẫn nhiệt độ cao, và bản chất của các trạng thái Hall lượng tử phân số vốn hữu ích cho lĩnh vực điện toán lượng tử.

Kể từ khi lần đầu tiên chúng có mặt trên thị trường, các laser đã củng cố và tăng cường thêm sinh khí cho ngành vật lí nguyên tử, và sự phiêu lưu khám phá không có dấu hiệu ngừng lại.

Còn tiếp...

Theo Physics World, tháng 5/2010

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Photon là gì?
25/07/2021
Là hạt sơ cấp của ánh sáng, photon vừa bình dị vừa mang đầy những bất ngờ. Cái các nhà vật lí gọi là photon, thì những
Lược sử âm thanh
28/02/2021
Sóng âm: 13,7 tỉ năm trước Âm thanh có nguồn gốc từ rất xa xưa, chẳng bao lâu sau Vụ Nổ Lớn tĩnh lặng đến chán ngắt.
Đồng hồ nước Ktesibios
03/01/2021
Khoảng năm 250 tCN. “Đồng hồ nước Ktesibios quan trọng vì nó đã làm thay đổi mãi mãi sự hiểu biết của chúng ta về một
Tic-tac-toe
05/12/2020
Khoảng 1300 tCN   Các nhà khảo cổ có thể truy nguyên nguồn gốc của “trò chơi ba điểm một hàng” đến khoảng năm 1300
Sao neutron to bao nhiêu?
18/09/2020
Các nhà thiên văn vật lí đang kết hợp nhiều phương pháp để làm hé lộ các bí mật của một số vật thể lạ lùng nhất
Giải chi tiết mã đề 219 môn Vật Lý đề thi TN THPT 2020 (đợt 2)
04/09/2020
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 96)
04/09/2020
Khám phá Hải Vương tinh 1846 John Couch Adams (1819–1892), Urbain Jean Joseph Le Verrier (1811–1877), Johann Gottfried Galle (1812–1910) “Bài
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 95)
04/09/2020
Các định luật Kirchhoff về mạch điện 1845 Gustav Robert Kirchhoff (1824–1887) Khi vợ của Gustav Kirchhoff, Clara, qua đời, nhà vật

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

Đọc nhiều trong tháng



Bài viết chuyên đề

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com