7 điều có thể bạn chưa biết về tia gamma

Tia gamma là loại bức xạ giàu năng lượng nhất, nó có đủ năng lượng để đi xuyên rào chắn bằng kim loại hoặc bê tông. Giàu năng lượng hơn cả tia X, tia gamma ra đời trong đám hỗn loạn của những ngôi sao bùng nổ, trong sự phân hủy của electron và trong sự phân rã của các nguyên tử phóng xạ. Và ngày nay, các nhà y khoa học còn dùng chúng trong phẫu thuật. Dưới đây là 7 sự thật thú vị về những photon mạnh mẽ này.

Bác sĩ tiến hành phẫu thuật não bằng ‘dao mổ tia gamma’

Tia gamma vừa có ích vừa nguy hiểm (và đừng lo, chúng không thể biến bạn thành người khổng lồ đâu). Để phá hủy các tế bào ung thư não và một số mầm bệnh khác, thỉnh thoảng các nhà y khoa học sử dụng ‘dao mổ tia gamma’. Kĩ thuật này sử dụng nhiều chùm tia gamma tập trung vào các tế bào cần phá hủy. Vì mỗi chùm tia có kích cỡ tương đối nhỏ nên nó không gây nhiều tổn hại cho các mô não khỏe mạnh. Nhưng ở chỗ chúng tập trung vào, lượng bức xạ có cường độ đủ mạnh để tiêu diệt các tế bào ung thư. Vì bộ não rất phức tạp, nên dao mổ tia gamma là một phương pháp tương đối an toàn để thực hiện những loại phẫu thuật nhất định khó thực hiện bằng những dao mổ thông thường.

Tia gamma

Tên gọi ‘tia gamma’ do Ernest Rutherford đặt

Nhà hóa học Pháp Paul Villard lần đầu tiên nhận ra tia gamma vào năm 1900 từ nguyên tố radium, nguyên tố được Marie và Pierre Curie tách được trước đó đúng hai năm. Khi các nhà khoa học buổi đầu nghiên cứu các hạt nhân nguyên tử biến đổi dạng thức như thế nào, họ nhận ra ba loại bức xạ dựa trên mức đâm xuyên của chúng vào một rào chắn bằng chì. Ernest Rutherford đã đặt tên cho các bức xạ theo ba kí tự đầu tiên của bảng chữ cái Hi Lạp. Tia alpha bật ra ngay, tia beta đi sâu hơn một chút, và tia gamma đi xuyên sâu nhất. Ngày nay chúng ta biết tia alpha là cùng loại với hạt nhân helium (gồm hai proton và hai neutron), tia beta hoặc là electron hoặc là positron (phản hạt của electron), và tia gamma là một loại ánh sáng.

Tia gamma

Phản ứng hạt nhân là nguồn sinh chính của tia gamma

Khi một hạt nhân uranium không bền phân rã trong quá trình phân hạch, nó giải phóng rất nhiều tia gamma trong quá trình đó. Phản ứng phân hạch được sử dụng trong các lò phản ứng hạt nhân lẫn các đầu đạn hạt nhân. Để theo dõi những vụ thử hạt nhân hồi thập niên 1960, nước Mĩ đã phóng các detector tia gamma lên vệ tinh. Họ tìm thấy nhiều vụ nổ hơn số lượng mà họ muốn thấy. Cuối cùng các nhà thiên văn nhận ra được những vụ nổ này đến từ không gian sâu thẳm bên ngoài – chứ không phải Liên Xô – và đặt tên cho chúng là các vụ nổ tia gamma, gọi tắt là GRB. Ngày nay chúng ta biết GRB gồm hai loại: vụ nổ của những ngôi sao khối lượng cực lớn, chúng bắn vọt tia gamma khi chúng qua đời, và va chạm giữa những tàn tích sao cực kì đậm đặc gọi là sao neutron và một vật thể khác, có khả năng là một sao neutron khác hoặc một lỗ đen.

Tia gamma giữ một vai trò quan trọng trong khám phá boson Higgs

Phần lớn các hạt trong Mô hình Chuẩn của vật lí hạt là không bền; chúng phân hủy thành những hạt khác hầu như ngay tức thì khi chúng được sinh ra. Chẳng hạn, boson Higgs có thể phân hủy thành nhiều loại hạt khác nhau, trong đó có tia gamma. Mặc dù lí thuyết dự đoán một boson Higgs sẽ phân hủy thành tia gamma với xác suất 0,2% nhưng loại phân hủy này tương đối dễ nhận dạng và nó là một trong những loại mà các nhà khoa học quan sát thấy khi lần đầu tiên họ tìm thấy boson Higgs.

Để nghiên cứu tia gamma, các nhà thiên văn chế tạo kính thiên văn vũ trụ

Tia gamma từ không gian tiến thẳng về phía Trái Đất và tương tác với đủ số nguyên tử trong khí quyển nên hầu như không còn tia nào trong số chúng đi tới bề mặt hành tinh của chúng ta. Điều đó có lợi cho sức khỏe của chúng ta, nhưng lại xui xẻo cho những ai muốn nghiên cứu GRB và những nguồn tia gamma khác. Để nhìn thấy tia gamma trước khi chúng đi tới khí quyển, các nhà thiên văn phải chế tạo các kính thiên văn đặt trong không gian. Yêu cầu này không dễ thực hiện bởi một số lí do. Chẳng hạn, bạn không thể sử dụng một thấu kính hay gương bình thường để làm hội tụ tia gamma, bởi vì tia gamma sẽ đi xuyên qua chúng. Thay vào đó, một đài thiên văn kiểu như Kính thiên văn Vũ trụ Tia gamma Fermi dò tìm tín hiệu từ tia gamma khi chúng đi tới một detector và biến đổi thành các cặp electron và positron.

Một số tia gamma có nguồn gốc từ những cơn bão sét

Vào thập niên 1990, các đài thiên văn trong không gian đã phát hiện những vụ nổ tia gamma đến từ Trái Đất, cuối cùng thì họ lần được nguồn gốc của chúng là từ những cơn bão sét. Khi điện tích tĩnh điện tích tụ bên trong các đám mây, kết quả nhãn tiền là tia sét. Điện tích tĩnh điện như thế còn tác dụng như một máy gia tốc hạt khổng lồ, tạo ra các cặp electron và positron, rồi chúng phân hủy thành tia gamma. Những vụ nổ này xảy ra đủ cao trong không khí nên chỉ có máy bay bị ảnh hưởng mà thôi – và đó là một trong những lí do khiến các chuyến bay phải tránh xa các cơn bão.

Tia gamma (gián tiếp) gây ra sự sống trên Trái Đất

Các hạt nhân hydrogen luôn luôn kết hợp lại trong lõi của Mặt Trời. Khi hiện tượng này xảy ra, một phụ phẩm là tia gamma. Năng lượng của tia gamma giữ sức nóng cho lõi Mặt Trời. Một phần tia gamma còn thoát vào những lớp ngoài của Mặt Trời, tại đó chúng va chạm với các electron và proton và mất dần năng lượng. Khi chúng mất năng lượng, chúng biến thành tia tử ngoại, hồng ngoại và ánh sáng nhìn thấy. Ánh sáng tử ngoại giữ ấm cho Trái Đất, và ánh sáng nhìn thấy dung dưỡng hệ thực vật của Trái Đất.

Nguồn: Symmetry Magazine

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Extension Thuvienvatly.com cho Chrome

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Kỉ lục mới về gia tốc electron: Từ zero lên 7,8 GeV trên 8 inch
23/10/2019
Để tìm hiểu bản chất của vũ trụ, các nhà khoa học phải chế tạo các máy va chạm hạt làm gia tốc electron và hạt phản
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 56)
22/10/2019
Định luật Bode về khoảng cách hành tinh 1766 Johann Elert Bode (1747–1826), Johann Daniel Titius (1729–1796) Định luật Bode, còn gọi
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 55)
22/10/2019
Hiệu ứng giọt đen 1761 Torbern Olof Bergman (1735-1784), James Cook (1728-1779) Albert Einstein từng nói rằng điều khó hiểu nhất ở
Tương lai nhân loại - Michio Kaku (Phần 28)
22/10/2019
HAI CÁCH ĐỂ SỐ HOÁ TÂM TRÍ Thực ra có hai phương án tiếp cận riêng biệt để số hóa bộ não con người. Đầu tiên là Dự
Tương lai nhân loại - Michio Kaku (Phần 27)
22/10/2019
MỘT QUAN ĐIỂM KHÁC VỀ SỰ BẤT TỬ Adaline có thể hối hận về món quà bất tử, và có lẽ cô ấy không đơn độc, nhưng
Thời gian là gì? (Phần 2)
21/10/2019
Vậy thì hãy nói đi: Thời gian là gì? Hãy nói một chút về lũ chồn sương. Để nắm rõ hơn cách các nhà vật lí nghĩ về
Vật lí Lượng tử Tốc hành (Phần 86)
16/10/2019
Chất siêu chảy Khi những chất lỏng nhất định, ví dụ helium lỏng, khi được làm lạnh xuống chỉ bằng vài độ trên không
Vật lí Lượng tử Tốc hành (Phần 85)
16/10/2019
Định tuổi bằng phóng xạ Là một ứng dụng tài tình của hiện tượng lượng tử phóng xạ, phép định tuổi bằng phóng xạ

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com