Con mèo ấy không bao giờ chết - Phần 1

Đã hơn 75 năm sau khi chào đời, khái niệm con mèo của Schrödinger vẫn tồn tại cho đến ngày nay. Robert P Crease trình bày đôi điều về câu chuyện này.

 

Con mèo của Schrödinger là sự ra đời của một loạt những nỗ lực nhằm mô tả cơ học lượng tử

Con mèo của Schrödinger là sự ra đời của một loạt những nỗ lực nhằm mô tả cơ học lượng tử. (Ảnh: iStockphoto.com/EEI_Tony)

Đó là vào năm 1935, nhà vật lí người Áo Erwin Schrödinger đã đề xuất hình ảnh con mèo nổi tiếng của ông để bình luận về cái ông xem là sự bế tắc không thể tránh khỏi của các đồng nghiệp của ông khi nghĩ tới cơ học lượng tử. Ông khó có thể tưởng tượng rằng con mèo ấy, cái ông nêu ra với chút ý khôi hài, vẫn được người ta bàn cãi cho gần 80 năm sau đó – và biết đâu chừng nó sẽ ăn sâu mãi mãi vào nền văn hóa công chúng. Vậy tại sao hình ảnh ấy vẫn đồng hành cùng với những động lực sáng tạo khác?

Một ví dụ mới đây là trong quyển của Will Grayson, Will Grayson, một quyển tiểu thuyết dành cho giới trẻ của John Green và David Levithan xuất bản trong năm 2010. Trong quyển sách đó, Will hỏi Jane – một cô gái mà anh có cảm giác nửa thích nửa không – về con mèo của Schrödinger. Jane mô tả thí nghiệm tưởng tượng nổi tiếng của nhà vật lí trên, rồi nói thêm rằng Schrödinger “không khẳng định con mèo bị giết hay bất cứ điều gì... mà chỉ nói rằng dường như có chút khả năng không thể là một con mèo có thể vừa sống vừa chết đồng thời”.

Will trầm ngâm trong đôi chút. Nghĩ tới cảm giác lộn xộn của mình – mặc dù bị Jane hút hồn, nhưng anh từng có lần từ chối cô sẵn lòng hôn – anh không nghĩ có gì lạ khi có cái gì đó vừa có thể thực và không thực đồng thời. “Mọi thứ chúng ta giữ trong những cái hộp kín là vừa sống vừa chết cho đến khi chúng ta mở cái hộp ra,” anh tự nhủ như thế. “Cái chưa được quan sát là vừa có vừa không.”

Một hình ảnh con mèo Schrödinger hoàn toàn khác được tìm thấy trong Blueprints of the Afterlife [tạm dịch: Đề án Hậu sinh], một quyển tiểu thuyết khoa học viễn tưởng huyền bí của Ryan Boudinot xuất bản trong năm nay. Nó mô tả một nhân vật tên là Abby Fogg, người tỏ ra vừa chết vừa sống đồng thời sau khi được lập trình để thâm nhập một thực tại khác. Vào một ngày nọ, trong nhà xác, cô từ từ nhìn chằm chằm vào hai phiên bản giống hệt nhau của chính mình. “Abby, cá tính của cô đã đi vào chồng chất,” vị giám đốc pháp lí bảo cô. “Như thể là cô vừa sống vừa chết đồng thời, và sự đồng thời này là một hệ thống tự sao chép trong đó có những ‘ảnh chộp nhanh’ khác nhau của cái chết của cô. Cái gì khiến việc xét nghiệm tử thi khó khăn kinh người, để tôi nói cho cô biết nhé.”

Chất liệu kì lạ

Cơ học lượng tử mô tả thế giới là sản phẩm của hai thành phần. Thứ nhất là một hàm thông tin, hàm ψ mô tả bởi phương trình Schrödinger, đó là một sóng cổ điển lan tỏa ra và chồng lấn, hay “chồng chất”, nhiều khả năng. Thành phần thứ hai là cái xảy ra với hàm này, làm cho nó biến mất và một trong những khả năng của nó là xuất hiện. Nếu điều này khiến bạn nghe thấy lạ lẫm, thì bạn không đơn độc đâu nhé: ngay cả những nhà tiên phong của cơ học lượng tử cũng chật vật lắm mới liên hệ được bức tranh kì lạ này với thế giới quen thuộc của chúng ta.

Niels BohrWerner Heisenberg nói rằng thế giới phân chia thành hai miền tách biệt: lượng tử và cổ điển. Miền lượng tử bị chi phối bởi trường ψ không thể quan sát và khi trường này chạm trán với cái gì đó trong miền cổ điển, qua phép đo hay những tương tác khác, thì sự chạm trán đó làm bay hơi, hay làm “suy sụp”, hàm sóng. Một trạng thái khả dĩ duy nhất cho đến nay trở thành “thật” và tất cả những khả năng khác bị loại trừ.

Quan điểm này lạ lẫm đến mức nó đã gây ra một làn sóng phản đối, Einstein đã dẫn đầu những vụ công kích mà tột đỉnh là bài báo “EPR” nổi tiếng năm 1935 do ông làm đồng tác giả với Boris Podolsky và Nathan Rosen, mang tiêu đề “Mô tả cơ lượng tử của thực tại vật lí có thể xem là hoàn chỉnh không?”. Công bố vào tháng 5 năm đó (Phys. Rev. 47 777), câu trả lời của bài báo cho câu hỏi khoa trương ở tiêu đề là một tiếng “không” rõ ràng. Phải có những nguyên tố độc lập với các quá trình đo, bộ ba EPR cho rằng như thế. Kinh nghiệm đời thường của chúng ta – và định nghĩa rất chung của thực tại – phụ thuộc vào những nguyên tố mà sự tồn tại của chúng độc lập với quan sát và phép đo.

Schrödinger cảm thấy mát dạ và đã viết thư cho ông bạn Einstein biểu lộ sự khoái trá. “Rõ ràng ông đã tóm được cái đuôi của lũ dogmatic q.m rồi,” ông tuyên bố xanh rờn. “dogmatic q.m” mà Schrödinger ám chỉ là cơ học lượng tử mà Bohr và Heisenberg chủ trương phủ nhận thực tại có những tính chất nhất định ví dụ như vị trí và xung lượng tách rời với các tình huống đo.

Einstein hồi âm nồng nhiệt không kém, và nói rõ trực giác của ông: vật lí học mô tả thực tại, nhưng không phải mọi mô tả là hoàn chỉnh. Ông tưởng tượng có hai cái hộp có nắp mà bạn có thể mở ra để nhìn vào bên trong, và có một quả bóng ở trong một hộp. Trước khi bạn “tiến hành quan sát” bằng cách nhìn vào bên trong hộp thứ nhất, làm thế nào bạn mô tả tình huống đó chứ? Chúng ta nói, khá chính xác, rằng xác suất quả bóng nằm trong cái hộp thứ nhất là ½, hay 50%. Nhưng đó có phải là một mô tả hoàn chỉnh? Tất nhiên không rồi, Einstein trả lời. Nó chỉ mô tả sự hiểu biết của chúng ta về tình huống đó, chứ không phải bản thân thực tại. Thực tế quả bóng nằm trong cái hộp thứ nhất hoặc không có trong đó. Nhưng theo phe "dogmatic q.m.", trên nguyên tắc thì việc nói xác suất quả bóng nằm trong cái hộp đó là 50% là một mô tả hoàn chỉnh. Vậy thì cơ học lượng tử dường như nói rằng quả bóng không có trong hộp này hay hộp kia, mà trước hết nó chỉ tồn tại trong một hộp khi bạn nhìn vào bên trong. Theo lí giải của Bohr–Heisenberg, Einstein viết một cách ngờ vực, “Trạng thái trước khi cái hộp mở ra hoàn toàn được mô tả bởi con số ½.”

>> Xem tiếp Phần 2

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Tạo bảng điểm online

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Chốt đáp số cho bài toán bán kính proton
20/09/2019
Vào năm 2010, các nhà vật lí ở Đức báo cáo rằng họ đã thực hiện được phép đo đặc biệt chính xác về kích cỡ proton,
Tranh cãi vẫn chưa dứt về chuyện tìm thấy sóng hấp dẫn
18/09/2019
Nhóm hợp tác giành giải Nobel LIGO vừa công bố một bài báo mô tả chi tiết hơn bao giờ hết về cách nhóm này phân tích các tín
Lần đầu tiên nghe được ‘tiếng khóc chào đời’ của một lỗ đen mới sinh
17/09/2019
Nếu thuyết tương đối rộng của Albert Einstein vẫn đúng, thì một lỗ đen ra đời từ sự va chạm chấn động vũ trụ của hai
Tìm hiểu nhanh vật lí hạt (Phần 7)
16/09/2019
Nhà nguyên tử luận đầu tiên Cuộc hành trình của chúng ta đã xuất phát từ đâu? Tôi cho rằng “vật lí hạt” đã khởi
Tìm hiểu nhanh vật lí hạt (Phần 6)
16/09/2019
Tìm kiếm mã code Richard Feynman vĩ đại (1918-88), người cùng nhận Giải Nobel Vật lí cho những đóng góp của ông cho triết học
Giải được bí ẩn nhiễm điện do cọ xát
15/09/2019
Đa số mọi người đều từng trải nghiệm cảm giác tóc dựng đứng sau khi cọ xát bong bóng lên đầu mình hay tia lửa xoẹt
Các nguyên tử tăng tốc đến 5000 km/s khi chúng rơi vào siêu lỗ đen
15/09/2019
Các quan sát về chất khí đang bị nuốt vào siêu lỗ đen tại tâm của các quasar đã làm sáng tỏ thêm về cách những vật thể
Phát hiện hơi nước trên một hành tinh đá ở xa
14/09/2019
Các nhà khoa học vừa phát hiện thấy hơi nước trong khí quyển của một hành tinh đá ở cách Trái Đất 110 năm ánh sáng. Tên

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com