Bài giảng Dao động và Sóng (Phần 3)

Benjamin Crowell

alt

Hình trên: Loạt ảnh trích từ phim ghi lại cây cầu Tacoma Narrows Bridge đang dao động vào ngày nó đổ sập. Hình giữa: Cây cầu ngay trước khi sập, với các cạnh dao động 8,5 m lên xuống. Lưu ý là cây cầu dài hơn 1 dặm. Hình dưới: Trong và sau cú sập đổ cuối cùng. Hình phía bên phải cho thấy quy mô to lớn của công trình xây dựng.

Chương 2

Cng hưng

Không bao lâu sau khi cây cầu Tacoma Narrows Bridge khánh thành vào tháng 7 năm 1940, những người lái xe bắt đầu chú ý tới xu hướng của nó dao động khủng khiếp cả trong một cơn gió vừa. Mệnh danh là “Gertie tẩu mã”, cây cầu đã sụp đổ trong một cơn gió đều đều 42 dặm trên giờ vào hôm 7 tháng 11 cùng năm đó. Sau đây là bài báo cáo tận mắt từ một biên tập viên báo chí có mặt trên cầu khi các dao động đạt tới điểm sụp đổ.

“Đúng lúc tôi vừa lái qua tòa tháp, cây cầu bắt đầu đung đưa dữ dội từ bên này sang bên kia. Trước khi tôi nhận ra nó, độ nghiêng trở nên khủng khiếp tới mức tôi mất cả sự điều khiển xe… Tôi đạp phanh và nhảy ra ngoài, đập mặt lên lề vỉa hè.

“Xung quanh tôi, tôi nghe bê tông kêu răng rắc. Tôi bắt đầu lôi con chó Tubby của mình, nhưng bị ném đi lần nữa trước khi tôi chạm tới chiếc xe. Chiếc xe tự nó bắt đầu trượt từ bên này sang bên kia của đường xa lộ.

“Chống trên tay và đầu gối gần như suốt thời gian, tôi bò đi 500 yard hoặc nhiều hơn thế để đến tòa tháp. Hơi thở của tôi bắt đầu hổn hển, hai đầu gối của tôi đã trầy da và đang chảy máu, hai tay tôi thâm tím và sưng phồng vì ép mạnh vào lề đường bê tông… Cuối cùng, tôi liều mạng dứng dậy và chạy một mạch đi vài yard. Quay lại tòa tháp một cách an toàn, tôi thấy cây cầu trong pha sụp đổ của nó và thấy chiếc xe của mình lao xuống dòng Narrows”.

Tàn tích của cây cầu tạo ra một vỉa đá ngầm nhân tạo, một trong những vỉa lớn nhất thế giới. Nó không được thay thế trong mười năm. Nguyên nhân sụp đổ của nó không phải do chất liệu hay việc xây dựng không đạt yêu cầu, không phải do kiến trúc không đảm bảo: trụ cẩu là những khối bê tông một trăm foot, dầm cầu chắc nặng và chế tạo bằng thép carbon. Cây cầu bị phá hủy do hiện tượng vật lí gọi là cộng hưởng, chính hiệu ứng cho phép ca sĩ hát opera làm vỡ ly rượu với giọng hát của cô ta và chính hiệu ứng để cho bạn dò đài phát thanh mà bạn muốn. Cây cầu thay thế, tồn tại nửa thế kỉ cho đến nay, không chắc nặng hơn. Các kĩ sư đã rút kinh nghiệm và đơn giản là đưa thêm một số cải tiến nhỏ nhằm tránh hiện tượng cộng hưởng đã khai tử cho cây cầu cũ xấu số.

2.1 Năng lượng trong dao động

Một cách mô tả sự sụp đổ của cây cầu là cây cầu nhận lấy năng lượng từ ngọn gió thổi đều đều và tạo ra các dao động càng lúc càng nhiều năng lượng hơn. Trong mục này, chúng ta nói về năng lượng có trong một dao động, và trong phần tiếp theo chúng ta sẽ chuyển sang vấn đề mất năng lượng và cấp thêm năng lượng cho một hệ dao động, tất cả nhằm mục tiêu tìm hiểu hiện tượng cộng hưởng quan trọng kia.

Trở lại thí dụ chuẩn của chúng ta về vật nặng gắn với lò xo, chúng ta thấy có hai dạng năng lượng có liên quan: thế năng dự trữ trong lò xo và động năng của vật đang chuyển động. Chúng ta có thể đưa hệ vào chuyển động hoặc bằng cách đẩy vật nặng cấp động năng cho nó, hoặc kéo nó sang một bên để đưa vào thế năng. Cho dù là theo cách nào, hành trạng sau đó của hệ là giống nhau. Nó trao đổi năng lượng tới lui giữa động năng và thế năng (Chúng ta vẫn giả sử không có ma sát, nên không có năng lượng nào chuyển thành nhiệt, và hệ không bao giờ dừng lại).

Điều quan trọng nhất để hiểu về lượng năng lượng của các dao động là năng lượng toàn phần tỉ lệ với bình phương của biên độ. Mặc dù năng lượng toàn phần không đổi, nhưng để có thêm thông tin, ta xét hai thời điểm đặc biệt trong chuyển động của vật nặng gắn trên lò xo làm thí dụ. Chúng ta đã thấy là thế năng dự trữ trong một lò xo bằng ½ kx2, cho nên năng lượng tỉ lệ với bình phương của biên độ. Bây giờ hãy xét thời điểm khi vật nặng đi qua điểm cân bằng x = 0. Tại điểm này, nó không có thế năng, nhưng nó thật sự có động năng. Vận tốc thì tỉ lệ với biên độ của chuyển động, và động năng, ½ mv2, thì tỉ lệ với bình phương của vận tốc, nên một lần nữa chúng ta thấy năng lượng tỉ lệ với bình phương của biên độ. Lí do chọn hai điểm này đơn thuần là để cung cấp thông tin; chứng minh năng lượng tỉ lệ với A2 tại điểm bất kì đủ để chứng minh năng lượng tỉ lệ với A2 nói chung, vì năng lượng là không đổi.

Những kết luận này có hạn chế với thí dụ vật nặng gắn trên lò xo hay không ? Không. Chúng ta đã thấy F = - kx có giá trị gần đúng cho bất kì vật dao động nào, chừng nào biên độ là nhỏ. Do đó, chúng ta đi đến một kết luận rất tổng quát: năng lượng của mọi dao động xấp xỉ tỉ lệ với bình phương của biên độ, biết rằng biên độ là nhỏ.

alt

Ví dụ 1. Nước trong ống hình chữ U

Nếu nước được rót vào một ống hình chữ U như biểu diễn trong hình, nó có thể chịu những dao động xung quanh vị trí cân bằng. Năng lượng của một dao động như thế tính dễ nhất bằng cách xét “điểm đổi chiều” khi nước dừng lại và đảo chiều chuyển động. Tại điểm này, nó chỉ có thế năng và không có động năng, nên bằng cách tính thế năng của nó, chúng ta có thể tìm năng lượng của dao động. Thế năng này bằng công phải thực hiện để đưa nước ở phía bên phải xuống độ sâu A dưới mức cân bằng, nâng nó lên độ cao A, và đưa nó vào phía bên trái. Trọng lượng của phần nước này tỉ lệ với A, và do đó tỉ lệ với độ cao qua đó nó phải dâng lên, nên năng lượng tỉ lệ với A2.

Ví dụ 2. Ngưỡng năng lượng của sóng âm

Biên độ dao động của màng nhĩ của bạn ở ngưỡng đau gấp khoảng 106 lần biên độ mà nó dao động phản ứng với âm thanh êm dịu bạn có thể nghe. Hỏi năng lượng mà tai của bạn phải đối phó với âm thanh to gây đau lớn gấp bao nhiêu lần so với âm thanh êm dịu ?

Biên độ gấp 106 lần, và năng lượng thì tỉ lệ với bình phương của biên độ, nên năng lượng lớn gấp 1012 lần. Đây là một hệ số lớn khác thường!

Chúng ta chỉ đang nghiên cứu về dao động, không phải sóng, nên chúng ta không bàn xem sóng âm hoạt động như thế nào, hay nó mang bao nhiêu năng lượng đến chúng ta qua không khí. Chú ý do ngưỡng năng lượng lớn mà tai chúng ta có thể cảm nhận, nên sẽ không hợp lí khi có cảm giác sự ầm ĩ cộng gộp. Ví dụ, xét ba mức âm sau đây:

tiếng gió vừa đủ nghe

trò chuyện thầm ……………… gấp 105 lần năng lượng gió

hòa nhạc nặng ………………… gấp 1012 lần năng lượng gió

Theo khái niệm cộng và trừ, sự khác biệt giữa tiếng gió và tiếng trò chuyện thầm chẳng là cái gì so với sự khác biệt giữa tiếng trò chuyện thầm và tiếng hòa nhạc nặng. Sự tiến hóa muốn cảm giác nghe của chúng ta có thể dung chứa mọi âm thanh này mà không phải thu lại tới dưới cùng thang bậc sao cho bất cứ thứ gì êm dịu hơn tiếng vỡ của sự diệt vong sẽ nghe tương tự. Thay vì gây ra cho chúng ta cảm giác cộng mức âm, mẹ tự nhiên lại làm cho nó nhân lên gấp bội. Chúng ta cảm nhận sự khác biệt giữa tiếng gió và tiếng trò chuyện thầm trải ra ngưỡng cỡ 5/12 toàn ngưỡng tiếng gió so với tiếng hòa nhạc nặng. Mặc dù thảo luận chi tiết về thang decibel không được nhắc tới ở đây, nhưng điểm cơ bản cần lưu ý về thang decibel gần với giới hạn dưới của cảm giác nghe của con người, và cộng 1 đơn vị vào số đo decibel tương ứng với việc nhân mức năng lượng (hay thật ra là công suất trên diện tích) lên một hệ số nhất định.

Còn tiếp...

Xem lại Phần 1 | Phần 2

Vui lòng ghi rõ "Nguồn Thuvienvatly.com" khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email
Tin tức vật lý
Tạo bảng điểm online

Thêm ý kiến của bạn

Security code
Refresh

Các bài khác


Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 51)
14/12/2019
RADAR Radar là một công nghệ khác sử dụng bức xạ điện từ, và, như chúng ta sẽ thấy trong chương 16, nó giữ một vai trò
Vật lí học và chiến tranh - Từ mũi tên đồng đến bom nguyên tử (Phần 50)
14/12/2019
Chương 14 CÁC TIA VÔ HÌNH Sự phát triển và sử dụng radio và radar trong chiến tranh Bức xạ điện từ đã giữ một vai trò
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 70)
13/12/2019
Các vạch phổ Fraunhofer 1814 Joseph von Fraunhofer (1787–1826) Mỗi quang phổ thường thể hiện sự biến thiên cường độ bức xạ
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 69)
13/12/2019
Định luật Chất khí Avogadro 1811 Amedeo Avogadro (1776-1856)   Định luật Avogadro, mang tên nhà vật lí Italy Amedeo Avogadro,
[ebook] Vật Lí Lượng Tử Cấp Tốc
13/12/2019
Mời các bạn tải về tập sách mới được dịch bởi Thư Viện Vật Lý: Tên sách: Vật Lí Lượng Tử Cấp Tốc Tác giả:
Tìm hiểu nhanh vật lí hạt (Phần 22)
13/12/2019
Khám phá tia vũ trụ Với phát minh ống chân không, các nhà khoa học được trang bị một cách đơn giản hóa hệ thống vật chất
Tìm hiểu nhanh vật lí hạt (Phần 21)
13/12/2019
Neutron Sau đó, vào năm 1932, James Chadwick (1891–1974) nắm lấy các kết quả thí nghiệm tiến hành ở Đức và Pháp. Walther Bothe và
‘Hạt X17’ có khả năng mang lực thứ năm của tự nhiên
12/12/2019
Vũ trụ của chúng ta bị chi phối bởi bốn lực cơ bản. Ít nhất thì đó là cái các nhà vật lí lâu nay vẫn nghĩ. Tuy nhiên, nay

Chúng tôi hiện có hơn 60 nghìn tài liệu để bạn tìm

360 độ

Vật lý 360 độ là trang tin nhanh, trao đổi chuyên đề vật lý và các khoa học khác cũng như các nội dung liên quan đến dạy và học.
Hi vọng các bạn giúp chúng tôi bằng cách đăng kí làm CTV.
Liên hệ: banquantri@thuvienvatly.com